ブログ

美術・図工 反転の利用ーパップスの定理★★

■反転の利用

反転の性質を使うと,パップスの定理の様な難しいものを簡単に証明できます.

このような図形はアルベロス
(靴屋のナイフ)といいます.
この中に面白い幾何学があります.

 

 

 

 

円弧αと円弧βに挟まれたア
ルベロスの領域に,互いに接す
るように円のチェーンω0, ω1,
ω2, … があるとき, 円ωnの
中心と直径ABとの距離は円ωn
の直径のn倍である.
(パップスの定理)

 

 

 

 

 

[以下の証明ができます]
円ω2の中心は,線分ABから円ω2の直径の2倍だけ離れていること.
① 点Aから円ω2へ接線を引く.両接点を通りAを中心とする円γは,円ω2
と直交します.(なぜなら,円の接線は接点での半径と直交するから)
② γを反転円にして,色々なものを反転してみましょう.
円ω2 は自分自身に.円α,β は,それぞれ 直線α’,β’に,
円ω1,ω0 は,それぞれ円ω1’,ω0’に,なります.
③ 円ω2,ω1’, ω0’の直径はすべて同じだから,パップスの定理が証明
された. (なぜなら,平行な直線α‘とβ’に挟まれているから)