ブログ

幾何学的な消滅

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2014.07.15] No.020
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
幾何学的な消滅

◆7×9の板で1コマが幾何学的に消滅する
これは今年の米国MAMで取り上げられたマジックです.
http://www.mathaware.org/mam/2014/calendar/areapuzzles.html

まずは,アルゼンチンのマジシャン,ノルベルトジャンセンによるプレゼンを
ご覧ください. http://youtu.be/3PszMaZ5Ipk
7x9のエリアにタイル片が配置されています,断層に沿って滑らせ
上部の左3コラム分と右4コラム分を入れ替えると,不思議なことにタイルが1つ減ります.
この操作を繰り返すたびにタイルが1つづつ減り3つまで減らせます.
タイルが1つ減っても,2つ減っても,3つ減っても,
元通りの7x9枠内にタイルはきちんと配置され変わらないように見えます.
これは不思議ですね.どうしてタイルが1つづつ余るのでしょうか?

ビデオを観察していると,タイルが消滅する原理がだんだんわかってきます.
原理理解を助ける図を以下に作成しました.
青色の面積がだんだん減じているのがわかります.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/497823/11/15935811/img_1?1405218032

このおもちゃを作製して見ようとする方は,この原理図を参考にしてください.
数学マジシャンの使っているタイルのパーツは目地が太いですね
私の原理図には,目地はありませんが,作製するときは目地の効果も考慮すべきでしょう.
結局,断層をはさんだある行だけ,1コマ縦の長さが1/7だけ縮むので,
7コラムあるから面積としては1コマ分取り出せることになります.

◆なぜタイルが1コマ減るのか
左のコラムと右の3列を入れ替えると,1コマ減る.
1コマの高さをbとすると,断層を挟んでb/4だけ縮みます.
ただし,右端のコラムの断層ではコマ間の目地が消えるのが残念!
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/497823/96/15937596/img_3?1405215030

◆真ん中を取り除いたお札が再現できる
http://youtu.be/-h0AXeLIHqQ
お札の中心を取り除いて,裏向きにして並べると
完全な1枚が再現できたように見えます.
真ん中が消えるとは,あり得ないことが起ったように見えます.
数学マジシャンの使っているおさつの裏面には
再配列したときに完成するようなお札の裏面の絵が描いてあるので
お札が再現したように錯覚します.以下の原理図を参考に作製してください.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/497823/96/15937596/img_0?1405215030