ブログ

Tex練習:w振り子

一般の振幅

$$\left\{ \begin{array}{@{\,} c @{\, } }\displaystyle \frac{d}{dt}\displaystyle \frac{ \partial L}{ \partial \dot{\phi } }-\displaystyle \frac{ \partial L}{ \partial \phi }=0 \\[0mm]\displaystyle \frac{d}{dt}\displaystyle \frac{ \partial L}{ \partial \dot{\psi } }-\displaystyle \frac{ \partial L}{ \partial \psi }=0\end{array} \right. $$

ラグランジュ関数$$L$$は,

$$L=T-U$$

$$ T=\displaystyle \frac{m+m_{1 } }{2}l^{2}\dot{\phi }^{2}+\displaystyle \frac{m_{1 } }{2}l^{2}_{1}\dot{\psi }^{2}+m_{1}ll_{1}cos\left( \phi -\psi \right) \dot{\phi }\dot{\psi } $$

$$U=-\left( m+m_{1} \right) glcos\phi -m_{1}gl_{1}cos\psi $$

--------------------

$$\displaystyle \frac{ \partial L}{ \partial \dot{\phi } }=\left( m+m_{1} \right) l^{2}\dot{\phi }+m_{1}ll_{1}cos\left( \phi -\psi \right) \dot{\psi }$$

$$\displaystyle \frac{ \partial L}{ \partial \dot{\psi } }=m_{1}l_{1}^{2}\dot{\psi }+m_{1}ll_{1}cos\left( \phi -\psi \right) \dot{\phi }$$

$$\displaystyle \frac{ \partial L}{ \partial \phi }=-m_{1}ll_{1}\dot{\phi \psi }sin\left( \phi -\psi \right) -\left( m+m_{1} \right) glsin\phi $$

$$\displaystyle \frac{ \partial L}{ \partial \psi }=m_{1}ll_{1}\dot{\phi \psi }sin\left( \phi -\psi \right) -m_{1}gl_{1}sin\psi $$

--------------------

$$\left\{ \begin{array}{@{\,} c @{\, } }\left( m+m_{1} \right) l^{2}\ddot{\phi }+m_{1}ll_{1}cos\left( \phi -\psi \right) \ddot{\psi }-m_{1}ll_{1}\dot{\psi }sin\left( \phi -\psi \right) \left[ \dot{\phi }-\dot{\psi } \right] =-m_{1}ll_{1}\dot{\phi \psi }sin\left( \phi -\psi \right) -\left( m+m_{1} \right) glsin\phi \\[0mm]m_{1}l_{1}^{2}\ddot{\psi }+m_{1}ll_{1}cos\left( \phi -\psi \right) \ddot{\phi }-m_{1}ll_{1}\dot{\phi }sin\left( \phi -\psi \right) \left[ \dot{\phi }-\dot{\psi } \right] =m_{1}ll_{1}\dot{\phi \psi }sin\left( \phi -\psi \right) -m_{1}gl_{1}sin\psi\end{array} \right. $$

 

$$ \left\{ \begin{array}{@{\,} c @{\, } }\left( m+m_{1} \right) l^{2}\ddot{\phi }+m_{1}ll_{1}cos\left( \phi -\psi \right) \ddot{\psi }+m_{1}ll_{1}\dot{\psi }^{2}sin\left( \phi -\psi \right) =-\left( m+m_{1} \right) glsin\phi \\[0mm]m_{1}l_{1}^{2}\ddot{\psi }+m_{1}ll_{1}cos\left( \phi -\psi \right) \ddot{\phi }-m_{1}ll_{1}\dot{\phi }^{2}sin\left( \phi -\psi \right) =-m_{1}gl_{1}sin\psi \end{array} \right. $$

$$ \left[ \begin{array}{@{\,} cc @{\, } }\left( m+m_{1} \right) l^{2} & m_{1}ll_{1}cos\left( \phi -\psi \right) \\[0mm] m_{1}ll_{1}cos\left( \phi -\psi \right) & m_{1}l_{1}^{2}\end{array} \right] \left[ \begin{array}{@{\,} c @{\, } } \ddot{\phi } \\[0mm]\ddot{\psi }\end{array} \right] =\left[ \begin{array}{@{\,} c @{\, } }-m_{1}ll_{1}\dot{\psi }^{2}sin\left( \phi -\psi \right) -\left( m+m_{1} \right) glsin\phi \\[0mm]m_{1}ll_{1}\dot{\phi }^{2}sin\left( \phi -\psi \right) -m_{1}gl_{1}sin\psi\end{array} \right] $$

$$\left[ \begin{array}{@{\,} cc @{\, } }\left( m+m_{1} \right) l^{2} & m_{1}ll_{1}cos\left( \phi -\psi \right) \\[0mm]m_{1}ll_{1}cos\left( \phi -\psi \right) & m_{1}l_{1}^{2}\end{array} \right] ^{-1}=\displaystyle \frac{1}{m_{1}\left( m+m_{1} \right) l^{2}l_{1}^{2}-m_{1}^{2}l^{2}l_{1}^{2}cos^{2}\left( \phi -\psi \right) }\left[ \begin{array}{@{\,} cc @{\, } }m_{1}l_{1}^{2} & -m_{1}ll_{1}cos\left( \phi -\psi \right) \\[0mm]-m_{1}ll_{1}cos\left( \phi -\psi \right) & \left( m+m_{1} \right) l^{2}\end{array} \right] $$

 $$ \left[ \begin{array}{@{\,} c @{\, } }\ddot{\phi } \\[0mm]\ddot{\psi }\end{array} \right] =\displaystyle \frac{1}{m_{1}\left( m+m_{1} \right) l^{2}l_{1}^{2}-m_{1}^{2}l^{2}l_{1}^{2}cos^{2}\left( \phi -\psi \right) }\left[ \begin{array}{@{\,} cc @{\, } } m_{1}l_{1}^{2} & -m_{1}ll_{1}cos\left( \phi -\psi \right) \\[0mm]-m_{1}ll_{1}cos\left( \phi -\psi \right) & \left( m+m_{1} \right) l^{2} \end{array} \right] \left[ \begin{array}{@{\,} c @{\, } }-m_{1}ll_{1}\dot{\psi }^{2}sin\left( \phi -\psi \right) -\left( m+m_{1} \right) glsin\phi \\[0mm]m_{1}ll_{1}\dot{\phi }^{2}sin\left( \phi -\psi \right) -m_{1}gl_{1}sin\psi\end{array} \right] $$

 

$$=\displaystyle \frac{1}{m_{1}\left( m+m_{1} \right) l^{2}l_{1}^{2}-m_{1}^{2}l^{2}l_{1}^{2}cos^{2}\left( \phi -\psi \right) }\left[ \begin{array}{@{\,} c @{\, } }-m_{1}^{2}ll_{1}^{3}\dot{\psi }^{2}sin\left( \phi -\psi \right) -m_{1}\left( m+m_{1} \right) gll_{1}^{2}sin\phi -m_{1}^{2}l^{2}l_{1}^{2}\dot{\phi }^{2}cos\left( \phi -\psi \right) sin\left( \phi -\psi \right) +m_{1}^{2}gll_{1}^{2}cos\left( \phi -\psi \right) sin\psi \\[0mm]m_{1}^{2}l^{2}l_{1}^{2}\dot{\psi }^{2}cos\left( \phi -\psi \right) sin\left( \phi -\psi \right) +m_{1}\left( m+m_{1} \right) gl^{2}l_{1}cos\left( \phi -\psi \right) sin\phi + \sqcap - m_{1}\left( m+m_{1} \right) l^{3}l_{1}\dot{\phi }^{2}sin\left( \phi -\psi \right) -m_{1}\left( m+m_{1} \right) gl^{2}l_{1}sin\psi\end{array} \right] $$

 

$$\left[ \begin{array}{@{\,} c @{\, } }\dot{\phi }(n+1) \\[0mm]\dot{\psi }(n+1)\end{array} \right] =\left[ \begin{array}{@{\,} c @{\, } }\dot{\phi }(n) \\[0mm]\dot{\psi }(n)\end{array} \right] +\left[ \begin{array}{@{\,} c @{\, } }\ddot{\phi }(n) \\[0mm]\ddot{\psi}(n)\end{array} \right] \mit\Delta t$$

 $$ \left[ \begin{array}{@{\,} c @{\, } } \phi (n+1) \\[0mm] \psi (n+1) \end{array} \right] =\left[ \begin{array}{@{\,} c @{\, } } \phi (n) \\[0mm] \psi (n) \end{array} \right] +\left[ \begin{array}{@{\,} c @{\, } } \dot{\phi }(n) \\[0mm] \dot{\psi }(n) \end{array} \right] \mit\Delta t $$

タグ 準備中