ブログ

美術・図工 対称性から明らかである


■テープをこのように結ぶと正5角形ができることが知られていますが
なぜでしょうね.証明してください.


 

 

 

 

 

 

 

 

 

右の図は正5角形の外形と内部の対角線でできる星形が見えます.
対角線と正5角形の辺は平行で,赤く着色したものがテープであり,
テープの一方の端が対角線の星形を,もう一つの端が5角形の辺を
交互に入れ替えながら描くことが,軌跡を辿ってみれば確かめられます.
私は,正5角形であることの証明をどのようにしたらできるか
まだ考えたことがありません.案外難しそうです.
どうぞ良い証明ができたらここで教えてください.
いずれにしても,正5角形になることは,対称性から明らかです.
「この5角形の図形には,5回回転対称性があるので,この5角形は正5角形だ」
と言うのは如何ですか.一目でこの5角形は5回回転対称だとわかります.
これなら面倒なことを言わずにすむので,対称性は非常に強力な概念です.
このような論法をいろいろな所で使いたいのですが,乱暴ですか皆様どう思ますか.
■紙を2つ折りにすると折り目が直線になることを証明してください.
これも当たり前なのに,証明が面倒な問題です.
この問題に対する私の解答は,「対称性から明らかである」と言っておきます.

タグ 幾何  対称性