ブログ

美術・図工 エッシャー風タイル張りを生む凸5角形タイル★

5角形タイルで平面張り詰め(タイリング)ができるタイルの形は,以前掲載したタイプの5角形タイルだけではありません.全部で15タイプあります.単位胞がたくさんの5角形タイルで構成される15番目のものは,コンピュータを用いて見つかりました.
■米国サンディエゴの主婦マジョリー・ライスが,タイル張り(タイリング)の問題を初めて知ったのは,1975年のScientific American誌のマーチン・ガードナーのコラムでした.平面をタイル張りできる「タイル」の形,別の言い方をすれば,一つのタイルで平面を分割する(テッセレーション)問題です.
平面のタイル張りは,任意の3角形,任意の4角形タイルで可能,凸7角形以上のタイルでは不可能です.凸6角形の場合は,平行6辺形の他にもあり,全部で3タイプのタイル形が可能なことは,ラインハルトが学位論文で証明しました(1918).残されたのは凸5角形の場合で,1975年時点のガードナーのコラムには,ラインハルトの5タイプと1967年にカーシュナーが発見した3タイプが掲載されています.カーシュナーの論文には,タイリングできる凸5角形タイプが他にないことの証明は省略されており,そして,実際にまだ新しいタイプがあったのです.

■以下は,Natalie Wolchoverの記事(Quantamagazine,2017)から引用
https://www.quantamagazine.org/marjorie-rices-secret-pentagons-20170711/

フロリダ州に生まれたマージョリは,1クラスだけの田舎の学校で年長の子供たちと一緒に学びました.彼女は勉強好きでしたが,高等学校で数学を学んだのは1年だけです.貧困と文化的規範のため,大学に進学するなど思いもよらない時代でした.1945年,彼女は結婚しワシントンD.C.に移り,幼い息子と一緒に、その地で商業デザイナーとして働きました.後にサンディエゴに移住します.
数学が楽しみで,黄金比とピラミッドに魅了されていたといいます.ライスは,子どもたちが学校に通っている間に自分も読めるようにと,息子達にScientificAmericanの定期購読を許しました.

この問題では,5角形タイルのタイプ分けがとても難しい.連続変形によりどちらのタイプにも属するタイルがあるし,同じタイプでも出来上がったパターンが全く違うように見えたりもする.新しいタイプであるかどうかの判定は,ライスもずいぶん苦労したに違いありません.数学的な背景がないので,独自の記法システムを開発し,数ヶ月で新しいタイプを発見したといいます.彼女は発見に驚き喜んで,自分の仕事をガードナーに送りました.ガードナーはそれをペンシルバニア州のモラヴィアン・カレッジのタイリング問題の専門家であるドリス・シャトシュナイダーに送ってくれました.
シャトシュナイダーは,ライスの発見が正しいことを確認しました.ライスのアプローチは,後にマイケル・ラオが新しいコンピュータ支援の証明に取り入れた手法と同じでした.ライスは,4つの新しい凸五角形タイプと,それらによるほぼ60種類のテッセレーションを発見しました.シャトシュナイダーの招待で,ライス夫妻は大学の数学会に出席し,聴衆に紹介されました.ワシントンにある数学協会のロビーの床タイルに彼女の五角形テッセレーションの1つが使われ,彼女の発見したエッシャー風の絵が見られるといいます.
コンピュータ支援の新証明法で,フランスの数学者 マイケル・ラオが,ライスが発見した4つを含む15(残りは,ジェームスIII,シュタイン,マンがそれぞれ1つづつ発見)の凸五角形タイプがすべてであることを証明しました.ライスは,2017年7月2日94歳で亡くなりました.認知症のため,五角形タイリングの物語がついに完結したのを知ることはなかったが,ガードナーの提起から数十年が経過していました.

タグ 幾何