ダ・ビンチの星型(正12面体の芯)★7

このダ・ビンチの星型は,「星型小12面体」とも呼ばれます.
イメージ 1

 

 

 

 

 

 

 

 


シュレーフリの記号で書くと{5/2,5}です.
(注)シュレフリの記号{p,q}というのは,正p角形の面が,頂点でq個集まっているような正多面体を表す記号でした.
この形は,東京都庭園美術館,朝香宮邸,姫宮の部屋の照明器具にも使われている美しい形です.芯になるのは正12面体で,その12個の正5角形の面の上に,それぞれ正5角錘を取り付けた形をしています.正5角錐の頂点は,それぞれ,芯となる正12面体の面に対応していますから,頂点を結んでできる図形(赤の多面体)は,正12面体に双対な正20面体です.
この星型多面体の面は,以下の左図の様な星型正多角形(五芒星)です.
イメージ 2

 

 

 

 

 


 Fig. 星型5角形(五芒星)と星型8角形(ダ・ビンチの星型)

それぞれの図の赤い輪郭線(それぞれ正5角形と正8角形)は,
凸多角形(凹所のない多角形)で,赤い凸多角形内部に星型が作図されています.

■五芒星(図左)
星型正5角形の辺をA→C→E→B→D→Aと1周りたどると,
辺の向き(→)が2回転することがわかります.あるいは,
「5角形の頂点を1つ飛ばしで辿って,2周りすると始めの頂点に戻る」
ということもできます.
このような星形を{5/2}と表記します.
(もし,1点の周りが2x360°という世界があれば,この星型は凸多角形になります)
凸多角形では,1周すると辺の向きは360°回転し,正n角形では,頂点で360°/nずつ回ります.従って,正n角形の頂角(内角)は180°-360°/nです.五芒星の頂角は36°で,正n角形の頂角が36になるのはn=5/2ですから,五芒星を{5/2}と表記するのは妥当でしょう.

星型8角形でも同様で,この図形は{8/3}です.

■さて,星型正多面体に戻りましょう.正5角錐の頂点の周りに,星型正多角形{5/2}が,5個集まっていることがわかるでしょう(例えば,頂点Aの周りに右図のような五芒星の板を5枚集める).芯に正5角形の穴の開いた五芒星の板を,各頂点で5枚ずつ組み合わせると,この立体を作ることができます.
従って,この星型正多面体をシュレーフリの記号で書くと{5/2,5}となります.
イメージ 3