Tex練習: 反応拡散方程式の解の安定性(数学的追補)

■連立線形微分方程式を解く

例えば,次の連立線形微分方程式は,行列を使って表現できます.

$$ \left\{ \begin{array}{@{\,} c @{\, } } \displaystyle \frac{d}{dt}x=y \\[0mm] \displaystyle \frac{d}{dt}y=-x \end{array} \right. $$

 $$ \displaystyle \frac{d}{dt}\left[ \begin{array}{@{\,} c @{\, } } x \\[0mm] y \end{array} \right] =\left[ \begin{array}{@{\,} cc @{\, } } 0 & 1 \\[0mm] -1 & 0 \end{array} \right] \left[ \begin{array}{@{\,} c @{\, } } x \\[0mm] y \end{array} \right]   \Longleftrightarrow  \displaystyle \frac{d}{dt}\vec{x }=M\vec{x } \\ $$

このような微分方程式の解は,初期値を $$\vec{x_{0} } =\vec{x }(t_{0})$$ として,

$$ \vec{x}(t)=\vec{x }_{0}+\displaystyle \int_{t_{0 } }^{t}M\vec{x}(\tau )d\tau  $$  となります.

これの計算は,逐次近似で無限の関数列を作れば実行できます.

$$\vec{x_{1 } }(t)=\vec{x}_{0}+M\vec{x_{0 } }(t-t_{0})$$

$$\vec{x_{2 } }(t)=\vec{x}_{0}+\displaystyle \int_{t_{0 } }^{t}M\vec{x_{1 } }(\tau )d\tau =\vec{x}_{0}+M\vec{x_{0 } }(t-t_{0 } )+M^{2}\vec{x_{0 } }\displaystyle \frac{(t-t_{0})^{2 } }{2}$$

$$\vec{x_{n } }(t)=\displaystyle \sum_{0}^{n}M^{n}\vec{x_{0 } } \displaystyle \frac{(t-t_{0})^{n } }{n!}$$

ここで,$$n \longrightarrow \infty $$とすると収束して,次の指数関数の解が得られます.

$$\vec{x }(t)=e^{M\left( t-t_{0} \right) }\vec{x}_{0}$$ ただし,$$e^{Mt} $$の定義は  $$e^{Mt}=\displaystyle \sum_{0}^{ \infty }\displaystyle \frac{1}{n!}(Mt)^{n}$$

この解は確かに, $$\displaystyle \frac{d}{dt}e^{Mt}=Me^{Mt}$$を満たします.

■線形化

現実の連立微分方程式は非線形がほとんどです.

平衡点の近傍でテーラー展開し,局所的に方程式を線形化します.

例えば,一般的な反応拡散系の方程式で$$f(u,v),g(u,v)$$は線形とは限りません.

$$ \left\{ \begin{array}{@{\,} c @{\, } } \displaystyle \frac{ \partial u}{ \partial t}=D_{u}\displaystyle \frac{ \partial ^{2}u}{ \partial x^{2 } }+f(u,v) \\[0mm] \displaystyle \frac{ \partial v}{ \partial t}=D_{v}\displaystyle \frac{ \partial ^{2}v}{ \partial x^{2 } }+g(u,v) \end{array} \right. $$

$$u(x,t), v(x,t)$$(それぞれ2種類の物質の濃度)を,平衡点のまわりでテーラー展開し,線形近似します.ただし,平衡点を$$(0,0)$$とする(このようにしても一般性を失わない).

1次の偏微分係数が作る行列(ヤコビアン)$$J$$を定義し,次のように線形化する.

   $$ J \equiv \left[ \begin{array}{@{\,} cc @{\, } } \displaystyle \frac{ \partial f}{ \partial u} & \displaystyle \frac{ \partial f}{ \partial v} \\[0mm] \displaystyle \frac{ \partial g}{ \partial u} & \displaystyle \frac{ \partial g}{ \partial v} \end{array} \right] \equiv \left[ \begin{array}{@{\,} cc @{\, } } f_{u} & f_{v} \\[0mm] g_{u} & g_{v} \end{array} \right] $$,  $$\left[ \begin{array}{@{\,} c @{\, } } f(u,v) \\[0mm] g(u,v) \end{array} \right] =\left[ \begin{array}{@{\,} cc @{\, } } f_{u} & f_{v} \\[0mm] g_{u} & g_{v} \end{array} \right] \left[ \begin{array}{@{\,} c @{\, } } u \\[0mm] v \end{array} \right] $$

$$f_{u} , f_{v} ,g_{u} ,g_{v}$$は,平衡点$$(0,0)$$での偏微分係数です.

線形化された反応拡散方程式を以下に示します.$$D_{u}, D_{v}$$はそれぞれの拡散係数(常に正).

$$ \left\{ \begin{array}{@{\,} c @{\, } } \displaystyle \frac{ \partial u}{ \partial t}=D_{u}\displaystyle \frac{ \partial ^{2}u}{ \partial x^{2 } }+f_{u}u+f_{v}v \\[0mm] \displaystyle \frac{ \partial v}{ \partial t}=D_{v}\displaystyle \frac{ \partial ^{2}v}{ \partial x^{2 } }+g_{u}u+g_{v}v \end{array} \right. $$

 

$$u(x,t)=u^{*}e^{\sigma t}\textrm{sin}\alpha x$$, $$v(x,t)=v^{*}e^{\sigma t}\textrm{sin}\alpha x$$ と置くと

$$ \left\{ \begin{array}{@{\,} c @{\, } } \sigma u^{*}=-\alpha ^{2}D_{u}u^{*}+f_{u}u^{*}+f_{v}v^{*} \\[0mm] \sigma v^{*}=-\alpha ^{2}D_{v}v^{*}+g_{u}u^{*}+g_{v}v^{*} \end{array} \right. $$

行列形式で書くと,

$$ \left[ \begin{array}{@{\,} c @{\, } } u^{*} \\[0mm] v^{*} \end{array} \right] =\displaystyle \frac{1}{\sigma }\left[ \begin{array}{@{\,} cc @{\, } } f_{u}-\alpha ^{2}D_{u} & f_{v} \\[0mm] g_{u} & g_{v}-\alpha ^{2}D_{v} \end{array} \right] \left[ \begin{array}{@{\,} c @{\, } } u^{*} \\[0mm] v^{*} \end{array} \right] $$

$$A \equiv \left[ \begin{array}{@{\,} cc @{\, } } f_{u}-\alpha ^{2}D_{u} & f_{v} \\[0mm] g_{u} & g_{v}-\alpha ^{2}D_{v} \end{array} \right] $$

は平衡点$$(0,0)$$におけるヤコビアン.

■解の安定性

$$ \left[ \begin{array}{@{\,} c @{\, } } u^{*} \\[0mm] v^{*} \end{array} \right] =\displaystyle \frac{1}{\sigma }A\left[ \begin{array}{@{\,} c @{\, } } u^{*} \\[0mm] v^{*} \end{array} \right]      \Longrightarrow      P\left[ \begin{array}{@{\,} c @{\, } } u^{*} \\[0mm] v^{*} \end{array} \right] =\displaystyle \frac{1}{\sigma }PAP^{-1}P\left[ \begin{array}{@{\,} c @{\, } } u^{*} \\[0mm] v^{*} \end{array} \right] $$

$$ PAP^{-1}=\left[ \begin{array}{@{\,} cc @{\, } } \lambda _{1} & 0 \\[0mm] 0 & \lambda _{2} \end{array} \right] $$

が対角化されると,固有値 $$\lambda _{1} , \lambda _{2}$$,固有ベクトルは $$P\left[ \begin{array}{@{\,} c @{\, } }u^{*} \\[0mm]v^{*}\end{array} \right] $$

平衡点 $$(0,0)$$ の解が安定であるためには,すべての固有値が負でなければならない.

$$\lambda _{1}<0,\lambda _{2}<0$$ が必要十分であり,$$\lambda _{1}+\lambda _{2}<0$$では少しゆるい条件になる.

$$A$$の固有値を求めるのは面倒なので,対角化により$$Tr$$は変わらない$$Tr[A]=Tr[PAP^{-1}]$$を利用し,ゆるく評価すると,$$Tr[A]=f_{u}+g_{v}-\alpha ^{2}(D_{u}+D_{v})<0$$

拡散項がない($$D_{u}=D_{v}=0$$)時の安定性から $$f_{u}+g_{v} < 0$$が成立するので,

例えば, $$f_{u}>0, g_{v}<0$$,$$\left| \begin{array}{@{\,} c @{\, } }f_{u}\end{array} \right| <\left| \begin{array}{@{\,} c @{\, } }g_{v}\end{array} \right| $$が得られます.

$$u$$は加速剤,$$v$$は阻害剤として働き,互いの解が安定化することがわかります.