曲線の長さの不思議

http://twitpic.com/8qlket に,√2=2 というパラドックスが提起されています.
このパラドックスの原因は,非常に興味深いので,ここで考察することにします.

問題1

 

 

 

 

 

 

一辺の長さ1の正方形の対角線の長さは√2ですが,上図のように,X軸方向に1,y軸方向に1動く経路(n=0)を考えると長さは2になります.以降,このような折れ曲がり経路を繰り返して行きます(n=1, 2, 3, 4,・・・・).折れ曲がりを繰り返して行っても,いつも経路の長さは2で変わらないことがわかるでしょう.このような碁盤の目のような経路の長さは,マンハッタン距離と呼ばれることもあります(マンハッタンの市街の道は,碁盤の目の様だそうです).マンハッタン経路は,n→で対角線に限りなく近づきますので,√2=2 というパラドックスになります.

どこがいけないでしょうか?

問題2

同様な問題に以下の様なものがあります.https://note.com/keyneqq/n/n2ead38a59af5
半径1の円の円周は2πです.半径1の円に外接する正方形の一辺の長さは2ですから,半径1の円周のマンハッタン距離は8です.n=0から出発してx方向,y方向への折れ曲がり数を繰り返しマンハッタン経路は,限りなく円周に近づきますが,マンハッタン距離は8のままです.
従って,2π=8,すなわち,π=4となります. どこがいけないでしょうか?

 

 ■さて,これらの問題に見られるパラドックスは,どこに原因があるのでしょうか?
これらのすべての曲線はいずれも連続であることは確かです.碁盤の目に沿って辿るマンハッタン経路を回細かく繰り返した曲線は,至る所ギザギザで,微分不可能な曲線になっており,曲線の長さを微分係数を用いた積分で定義することができません.2点間(x1,y1),(x2,y2)のマンハッタン距離の定義は|x1-x2|+|y1-y2|で,碁盤の目(メッシュ)を細かくすればするほど,マンハッタン経路はいくらでも目的とする曲線に近づけることはできるのですが,マンハッタン距離は不変です.
(メッシュで定義される碁盤の目のデジタル世界でも,差分により微分係数が定義できますが,そのときもユークリッド距離を用いて定義します)

マンハッタン経路で定義される曲線は,無限回折れ曲がりを繰り返すことで,目的とする曲線にいくらでも近づきますが,マンハッタン距離が変化するわけはありません.

繰り返しの手順を見て,折れ線のフラクタルとみなしフラクタル次元を求めると,この折れ線の次元はやはり1次元になりました.折れ線の幅がフラクタル次元を生むというような説明も見かけましたが,そうではなくフラクタルはこの問題では関係ありません.この問題で人を驚かせるパラドックスの原因は,単純に距離の定義の違いによるものです.
定義が違うものなので違って当然なのですが,2つの曲線は限りなく近づいて行きますので,定義の違いを忘れて同じ長さだと思ってしまうのが間違いの源です.