掲示板

No.464 「数学の弁明Апология математики」ウラジミール・ウスペンスキー(初版2007,第2版2017)

投稿日時: 2023/03/03 システム管理者

 

 

 

 

 

 

 

 

 

 

 

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2023.03.07] No.464
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━

「数学の弁明」.原題「Апология математики」(初版2007),2017年に第2版が出版されています.著者はウラジミール・ウスペンスキー(Владимир A. Успенский).著名な数学者A.N.コルモゴロフの弟子で数学者,言語学者,1966 年から 2018 年まで,モスクワ大学の数理論理およびアルゴリズム理論の学部長.
この出版物は読者から高く評価され,2007 年の「新世界」賞を受賞しました.数学と人文科学の間の障壁を克服し,非数学者が数学の基本的な概念と問題のいくつかに親しむことができます.

■先行する似た題名の本に,次のものがあります.そちらの本は,英国の数学者G.H.ハーディが1940年に出版したもので,全く異なる内容です.
そちらの本の内容もnoteの別の記事として取り上げていますので,そちらをご覧いただければ幸いです.https://note.com/sgk2005/n/n9fbb5b7fd9de


■ウラジミール・ウスペンスキーの本Апология математикиの内容に触れましょう:

第 1 章 ワトソン対ホームズ
第 2 章 ピタゴラスの定理とフェルマーの定理
第 3 章 未解決の問題と解決不可能な問題
第 4 章 長さと数
第 5 章 円と正方形
第 6 章 質量の問題とアルゴリズム
第 7 章 ガリレオのパラドックス、コルタザール効果、および量の概念
第 8 章 神話における平行線現実と数学
第9章 100万ドル問題
第10章 計量幾何学から位置の 幾何学へ
第11章 位置の幾何学からトポロジーへ
第12章 私たちの宇宙はどのようなものになるでしょうか?
第1章の付録 読者の意見
第3章の付録ゴールドバッハ問題の歴史について
「集合」「順序組」「対応」「関数」「関係」 の概念について

以下のサイトで公開されている内容から抜粋します:

Читать онлайн «Апология математики (сборник статей)», В. А. Успенский – Литрес
Читать онлайн книгу «Апология математики (сборник статей)» ав
www.litres.ru
現代社会では,どんな専門分野にも数学が係わっています.「数理物理学」を筆頭に,「数理生物学」,「数理言語学」,「数理経済学」,「数理心理学」等々.今や数学は流行の職業になっています.

これは,数学の応用の計り知れない可能性のためです.数学は,人文科学と見なされてきた分野にも浸透しています.

数学は,現実に適合した一般的でかなり明確なモデルを提供します.これは,他の科学によって提供される一般的でなく漠然としたモデルとは対照的です.

自然科学と人文科学の区分がいつまでも続くとは限りません.数学が自然科学に帰属することの反省が起こっています.数学は物理学の一部であると言われますが,物理の世界の特性記述に数学が成功したからで,人文科学の他の分野でも同じ成功を収めるに違いありません.

数学の人文科学への係わりについて

列車の乗客は窓越しに無数の白い羊の群れを見ています.そして,彼らは
電車に横向きに黒い羊がいるのに気づく.「ぁぁ,ここにも黒い羊が!」と 一人が叫ぶ.「片面の黒い羊が少なくとも 1 頭はいる」と,別の数学者が彼を訂正します.
この逸話は,過度の正確さが有害であり,適切な内容認識を妨げる可能性があることの例です.ここには,人文科学と数学の間の双方にとって有益な対話の基礎が​​あります.この対話では,数学者が(人文科学)非数学者に教えたりしませんが,構文構造の構築の正確さがいかに重要であるかの共有がなされます.数学者は,論理的枠組みを理解する能力を非数学者に伝えようとしています. 一方,非数学者は,不正確さの重要性の考えを数学者と共有します.非数学者は数学に対して,その論理的枠組みを包み込む肉付けと文脈の両方が,言及された枠組みと同じくらい重要であると示しています. 非数学者は,周囲の世界は不定形で曖昧であるため,数学的に正確な文言よりも,不正確で曖昧な文言の方が適切に反映されると思っています.
数学者と(人文科学)非数学者は異なる思考スタイルを持っており,異なるスタイルに触れることで両者が豊かになります.たとえば,「公理に明示的に記録された情報のみ推論に使用できる」という数学で広く普及している公理的方法の研究は,厳密な思考の習慣を植え付けます.そして,「無限集合の性質」を知ることは想像力を育みます.歴史家は公理的方法や無限集合を必要としないと思うかもしれません.しかし,思考と想像力の厳しさは彼の思考の妨げにはなりしません.
一方,数学の方にも学ぶべきことがたくさんあります.
人文科学者は数学者より他人の意見に寛容です.数学的な概念は明確に定義されていますが,人文科学的な概念は曖昧です. それゆえ,私たちの曖昧な世界を説明するのに適しています.
私たちは,情報を冷静に伝達する機能に関心があります.それは文言に具現化されます.国内プログラミングの創始者の一人であるアンドレイ・ペトロヴィッチ・エルショフは,これを「ビジネス散文Деловая проза」と呼びました. ビジネス散文には,特に,自然科学のテキスト (主に数学),法律のテキスト,事務のテキストおよび指示(マニュアル)が含まれます.ビジネス散文は私たちの生活の中でますます重要な位置を占めるため,母国語のレッスンや,感情を伴わない純粋な情報に特化した特別クラスで教えられる可能性があります.
ビジネス散文を教えることは,ビジネステキストの正しい編集と正しい認識のスキル,つまり,言葉で考えを正しく表現し,言葉で表現された考えを正しく解釈する能力を養成します.

(私のコメント)
数学は物理学の一部であるという思いは,私も同様に実感しています.
しかし,人文科学にも,数学の浸透が進んでいるのは事実です.
むろん,以前から数学の人文科学との係わりはありました.A.A.Баpсов(モスクワ大,数学)は,ロシア語文法,正書法の提案を行いました(1755).
数学の論理は,自然科学も人文科学も係わります.数学を人文科学に帰属させても不思議ではありません.
ブラックボックスとしてAIが用いられる現代では,現象の数学モデルを作ったり,得られた解析結果を解釈するのは,正しい読解力が必要であると思います.解釈次第でとんでもない結果も恣意的に導くことが可能ですから.