網目パターンの重ね合わせ2

投稿日時: 2021/02/21 システム管理者

2つの同一な網目パターンを種々の回転角度で重ねたときの干渉で,何が起こるか考察しよう.例として,面心の長方形(面心斜方格子)の頂点に円環を配した網目パターンの系(図110d)をとり上げる.

 

Fig.159

 

Fig.160
図159と160を見ると,角度2θが小さいうちは,二次的図形は(素図形の数が不十分なために)一次図形の拡大図となることがわかる.角度2θが大きくなるにつれて,拡大の度合いは小さくなる.面心斜方ネットの対称性を保ったまま,パターンは非常に大きく形を変え始める.図示された一連のパターンは,例えば壁紙や織物に適したパターンの豊富な品揃えが,互いに相対的に異なる角度にある2つの同一の周期構造の単純な機械的重ね合わせによって得られる可能性があることを示している.この可能性を考えると,一連の疑問が湧く.例えば,同一の周期構造の負あるいは正の重畳によってどんな効果が得られるだろうか.実験を上記に記述したパターンで行うと,二次的に生じた6角形の各中心に暗い丸点が形成されることが判明した(図161).

 

図161

特に興味深いのは,異なる図形を重畳したときの,対称性の相互作用に関する問題である.一般的な重畳と同一対称類の等価系の重畳,右手と左手系パターンあるいは異なる色に塗られた図形の相互作用などである(図162).
これらの疑問は,ほとんど研究されたことがないが,我々は複合系の対称性原理を使い,これらを調査してみよう.この原理は12章で紹介する.

無限のパターンの重畳の結果として得られる二次的形の多様性にもかかわらず,等式$$λ=2dsinθ$$は変わらずに残る.そこでは,同じネットが2つの
のパターンが選択され,かつ,角度$$2θ$$があまり大きくない場合には

図163(正の左手系パターンを負の右手系パターンの上に重畳)では,第二次パターンが一時のパターンの基底である正方格子を再現しているのがはっきりわかる.後者は黒が正,白が負の小さい3角形の行からなる.

網目の拡大率(すなわち$$d/λ$$の比)と角度$$2θ$$は互いに密接に相関している図から決定され,この式が問題のケースに適用可能であることを示している.

結論として,周期の異なる2つの縞模様の平行重ね合わせを考えてみよう(図164).
このケースは,音響学,光学,無線技術,その他の波動物理の分野で出会うビート現象幾何学的な描像を提供するので興味深い.
この現象は,同じ方向に移動する波長がわずかに異なる2つの平面波があるとき,二次的に長い波長の波が生じる現象で,音響学的には周期的な音の強弱(ビート)として観測される.
ビートは近似的に調整された2つの音叉を同時に鳴らすことで簡単に作れる.
実際には,2つの同じピッチの音叉の一方だけに,ワックスを貼り付けてチューニングをずらす.

平行な2つのシステムの重畳で生じるビートは,図164に示すように,第1のシステムの2本の連続した縞の間の距離は,$$λ_{1} = 1.91$$ mm;第2のシステムでは,この距離は$$λ_{2}=1.60$$mmである.

これらの2つの量は、一次干渉の波長と呼ばれることがある.
距離$$L=9.86$$mmは,密な隣接距離で,二次的な波長あるいはビート波の波長と同じである.

これらの量の関係をより詳細に検討すると次の式が得られ,既知の$$λ_{1}$$,$$λ_{2}$$から,二次波の波長Lを計算することができる:$$L=\displaystyle \frac{\lambda _{1}\lambda _{2 } }{\lambda _{1}-\lambda _{2 } }$$