koptsik-ch12-6

投稿日時: 2022/02/14 システム管理者

全体の対称性と部分の対称性の一般的関係を定式化するにあたり,全体や部分の概念を精査することは有用である.これらの概念の定義は 論理の公理:「全体はいかなる部分よりも小さくはない」により与えられる.点集合の場合の定義に適用すると,自分自身が要素である無限集合が存在することがわかる.そのような集合のべき乗は,その部分のべき乗と同じになる. 
ユークリッド空間における閉じた有限点集合を図形と呼ぶことにする.
図形Fの任意の2点をMとNとし,それらの間の距離を$$\rho \left( M,N \right) $$とする.関数$$\rho \left( M,N \right) $$の連続性から考えて,我々は常に図の2点A,Bで,すべてのM,Nに対し,$$\rho (A,B) \ge \rho (M,N)$$となるような2点を見出せる.このような[最小の]2点間の距離$$d=\rho \left( A,B \right) $$を集合Fの直径と呼ぶ.
図形をより小さな部分に分割することによって(Boltyanskii, Gokhberg, 1971参照),集合Fをいくつかの部分集合の合併union(被覆covering)の形に表現することができる.
$$F=H_{1} \cup H_{2} \cup \cdots \cup H_{m}$$
部分集合の直径はFの直径より等しいか小さい(図形$$H_{i}$$は互いに重ならない場合もある).
対称性の概念が図形Fで定義されれば,その部分でも定義されることは明らかであり,対応する群$$G$$と$$G_{i}$$の関係の問題は,対称群の重ね合わせの原理を一般化することで解決できるかもしれない.
読者は,この節と次節で多くの方程式を提示されても動揺する必用はない.それは,ほとんどの場合,基本関係(11)を特殊化したもので,次のような形に書き換えることができ,
$$G=G_{i} \cdot G^{D*} \cdot G^{S}=G_{i} \cdot G^{S*} \cdot G^{D**}$$                                  (11*)
(11)から生じる結果は(345頁も参照):$$G_{i} \supseteq G, G_{i} \subset G$$あるいは,$$G_{i} \not\supset \not\subset G$$である.
後者の場合,$$G_{i}$$から$$G$$への移行は,これらの群の共通部分群の対称化$$G_{i} \cap G=G \cdot G^{D}$$,または,これらの共通上位の包含群$$G_{\textrm{emb } } \supseteq G_{i} \cup G$$の非対称化のいずれかによって行われる可能性がある. 
群$$G$$と$$G_{i}$$の基本的な関係を変えることなく,幾何学空間から幾何的物理学(物質的)空間へ移行しても,完全系の各部分間の相互作用の問題は残る. 
さらに,ある(有限または無限)数の部分から構成される形成物の組織的完全性という新たな困難も出現する.これらのことは,幾何学レベルでは実現できた関係の一部しか,幾何物理学レベルでは実現できないことを意味する.

例えば,部分と全体との関係は,原因と結果との関係より広く,部分は全体と因果関係がない場合があることを忘れてはならない(Свечников; Svechnikov, 1971).
他方,完全系の考察中の固定状態を,許容された状態集合の一部と考えると,その状態の対称性は,重ね合わせの原理から生じる関係によって,その系の定常対称群に結ばれることがわかる.この場合,一般化原理は,例えば量子力学の特徴である状態の因果関係の媒介形式を記述するものであり,古典的決定論の原理の枠内には入らない.

式(11)と式(12),あるいはそれに先立つ式は,合わせて対称群の重ね合わせの原理を表している.式(11)は,系の対称化(拡大)または非対称化(縮小)の過程を,いくつかの対称化因子(集合$$M$$の要素)の包含または排除に結びつける.逆に,式(12)では,系の対称化は,いくつかの群$$G_{i}$$を交叉$$ \cap G_{j}$$から除外した結果であり,非対称化は,系にいくつかの新しい非等価の部分構造を系に含めた結果である:この場合,それらに対応する群$$G_{i}$$が系の非対称化因子として機能する.

群$$G$$と$$G_{i}$$の変換の作用下で,系全体とそれを構成する部分構造が保存されるということは,繰り返し指摘したように,その構造と部分構造に結びついたすべての性質と関係が同時に保存されるということである.したがって,対称群の重ね合わせの原理は,純粋幾何学の世界だけでなく,物質系や図形の世界でも成立つ.

群$$G$$と群$$G_{i}$$(または表現の空間で作用するそれらと同型の色群)は,構造または部分構造の要素の幾何学的配置の対称性だけでなく,対応する物理量の変換特性,例えば,物質系の物理特性を記述する一様なテンソル場,および物理場相互や,物質との相互作用で生じる現象も記述する. 

幾何学的な非対称性の原理(12)を物理現象に拡張したのは,ピエール・キュリー(1894)に属するものである.それは,彼の有名な言葉「非対称性が現象を生む」であり,彼自身の言葉を借りれば,次のように理解する必要がある."現象は,特性の対称性($$G_{i}$$),または,特性の対称性の部分群の1つの対称性($$G \subseteq G_{i}$$)を有する媒体舞台で存在し得る.つまり,ある現象にはある対称性の要素が共存していてもかまわないが,対称性のある要素を欠くが必要である.この非対称性が現象を生み出している.原理(12)の定式は,


幾何学的な非対称性の原理(12)を物理現象に拡張したのは,ピエール・キュリー(1894)によるものである.つまり,「ある現象は,その現象が持つ特徴的な対称性($$G_{i}$$),あるいはその特徴的な対称性の部分群($$G\subseteq G_{i}$$)のいずれかの対称性を持つ媒体の中に存在することがある」と理解される.つまり,ある現象にはある対称性が共存していてもよいのだが,その必要はない.しかし,ある対称性の要素が存在しないことは必要である.これが現象を作る非対称性である」 原理 (12) の定式化は次のようになる

 $$G_{\textrm{phenomena }i} \supseteq G_{\textrm{medium } }= \cap G_{\textrm{phenomena }i}$$ または,
$$G_{\textrm{property }i} \supseteq G_{\textrm{object } }= \cap G_{\textrm{property }i}$$                (13)
これを,Newman-Minnigerode-Curie(NMC)原理と呼ぶ.キュリーの定式化は,先人の結果の基礎の上にあり,19世紀の物理学の蓄積した事実を一般化したものである.ここで,この原理の形成の歴史を物語る他の定式を年代順に挙げてみよう.

В. Vivell (1830): 「光学的対称性は幾何学的対称性に正確に対応する」.F. Neumann (1850 - 1885): 「物理的性質に関して,ある材料はその結晶形と同じ種類の対称性を持っている」.W. Minnigerode (1884): 「結晶の対称群は,この結晶で起こりうるすべての物理現象の対称性の部分群である」.ここからキュリーの定式化に移ると,「結晶」という言葉を「媒体(舞台)」という言葉に置き換えればよいことになる.
キュリー自身は,もちろん先人たちも,残念ながら,20世紀の物理学に豊かに存在する構造研究の急速な開花を目撃することはできなかった.したがって,キュリー自身は,「生み出される作用は,原因よりも対称的であるかもしれない」という独創的な推測をしているが,観測された群$$G$$と$$G_{i}$$群間の関係のすべての形態,特に対称化効果(11)を予見することはできなかったのである.
ピエール・キュリーによる複合系の対称性の見つけ方(「自然界の異なるいくつかの現象が重なり合って一つの系を形成するとき,それらの非対称性が積み重なる.その結果,各現象に共通する対称性の要素だけが残る」),現在明らかになったように,異質な系に対してのみ有効である.キュリーの発言の多くが曖昧で矛盾していることから,研究者は繰り返しこれらの発言を批判し,因果関係の原則や十分根拠の原則に基づく他の発言に置き換えてきた(Birkhoff, 1950, 1954; Shubnikov, 1956; Koptsik, 1957-1971; Spassky and Krindatch, 1968, 1971).
このテーマに関する多くの文献があるにもかかわらず,NMCの原理を物理学に応用することは困難であった.例えば,流体力学において,原因の見かけ上の対称性が,それによって引き起こされる作用の対称性を伴わない場合,いわゆる対称性のパラドックスがある(Birkhoff, 1954参照).これは,一般に系の対称性が構成要素の対称群の交叉に還元されないため,式(12),(13)のNMC原理は適用範囲が限定されるためである.また,物理実験の結果決定された系の対称群は,幾何学的な群$$G$$と間違われることがあるが,実際は色群$$G^{(p)}$$である.
例えば,X線回折により2色群$$P4/mm'm'$$を持つ強磁性立方体結晶は,$$\mit\Phi =Pm3m \supset P4/mmm \longleftrightarrow P4/mm'm'=$$; 部分群,$$\mit\Phi ^{*}=\mit\Phi \cup P4/m \subset \mit\Phi $$
のみが,ここでは純粋に幾何学的な変換の群となる.このような場合,(12), (13)では幾何学的な部分群$$G^{*} \subset G^{(p)}$$のみを系の幾何学的対称性としてとらえる必要がある.もう一つの難点は,対称条件はその抽象的な性質上,現象の実現に必要なだけで,十分ではないことだ.系の対称性から予測される現象が観測されなかったり,不安定になったりすることがある.
強調すべきは,対称性の条件を形式的に分析しても,実際の物理現象を注意深く研究し,物理系に対称化または非対称化の要因として実際に作用する物質的要素を見つける必要性から,研究者は解放されないということである.

(12)に加えて対称化原理(11)を用いることで,先に述べた困難の1つが解消される.幾何学系の対称化の例は,本書の初版で紹介した(Shubnikov, 1961も参照).

対称群の重ね合わせの原理の分析を終えるにあたって,孤立系内の構造的なサブレベル間の相互作用と,系同士の相互作用の問題を忘れてはならない.物質系とそのサブシステムは,思考でしか分離できない.現実には,構造や対称性は,孤立した状態系あるいはそのサブレベルとは異なり相互作用がある.