マンデルブロ集合★7

(注)ここで載せた参照リンク先は,現在なくなっています.マンデルブロ集合の描画は,例えば, http://e-mandelbrot.com/ などで試すことができます.

マンデルブロ(仏の数学者)は,「フラクタル」という概念の創始者(1975)です.私たちは,ニュートンの微積分の発明以来,至る所で接線の引ける曲線を扱っていました.フラクタル曲線というのは,これらと全く異なる曲線で,以下の性質があります.
・曲線のどんな小さな部分を拡大しても,自分全体と同じ形が現れる曲線.
・至る所ギザギザで接線が引けない曲線.

■マンデルブロ集合というのは,ちょっと変わったフラクタルです.
複素平面上で,次の漸化式で定義される数列を考えます.
Z(n+1)={Z(n)}^2+c, Z(0)=0
Z(n)やcは複素数で,cは定数,Z(0)は初期値といいます.

複素平面上の点cに対して,数列 Z(0),Z(1),Z(2),・・・・,Z(n),・・・ を計算していきます.n→∞ のとき,|Z(n)|→∞ にならない(発散しない)数列が作れる複素数cの全体が作る集合(図の黒い部分)が,マンデルブロ集合です.
面白い形をしていますが,拡大しても拡大しても(解像度を上げても)同じ構造が見えるフラクタル性があります.
(注)ある定数cに対して,数列が発散しない初期値Z(0)の集合を充填ジュリア集合といいます.
http://mandelbrot.ovh.org/image.php?antialias=on&func=1&a=4&x1=-2&point=on&y1=1&x2=1&y2=-1&repeats=100&xZ0=0&yZ0=0&r=2&gen=1

 

 

 

 


発散しないということは,有限な値に収束するか,有限な範囲に振動するかです.
例えば,c=-1とすると,Z(0)=0,Z(1)=-1,Z(2)=0,Z(3)=-1,・・・・と数列は振動します.c=-1+iとすると,Z(0)=0,Z(1)=-1+i,Z(2)=-1-i,Z(3)=-1+3i,Z(4)=-9-5i,・・・・,この数列は発散です.発散しなかったc=-1はマンデルブロ集合に入り,発散したc=-1+iはマンデルブロ集合に入りません.このようにして複素平面を塗り分けて,奇妙な形のマンデルブロ集合が出来上がります.

しかしながら,実際はこの判別が難しい.始めのうちは有限に見えたものが,nが大きくなると突然発散するかもしれません.現実には際限なく計算するわけにはいきませんので,判定は近似j的で,例えば,n=200まで計算して,ある閾値を越えなければ,発散しないと判定するわけです.
そして,マンデルブロ集合(黒い部分)の境界外は発散するのですが,発散のスピードにより着色しています.このような抽象芸術のような不思議なパターンをご覧になったことがあるでしょう.これは,c のわずかな差により,運命が劇的に変わるカオスと秩序が入り混じってフラクタルになっている世界です.
http://mandelbrot.ovh.org/image.php?antialias=1&func=1&a=4&x1=-1.15625&y1=0.25&x2=-0.40625&y2=-0.25&repeats=100&xZ0=0&yZ0=0&r=2&gen=1


 

 

 

マンデルブロ集合をネット上でonlineで描かせるサイトが色々あります.
例えば,http://mandelbrot.ovh.org/ などを使ってみると面白いと思います.