掲示板

note.com投稿記事

エッシャーの「極限としての円」

■エッシャーのトリック(引用先:コクセター論文)
M.C.エッシャーの「極限としての円」Circle limit IIIを鑑賞しましょう(図左).
この円盤内は双曲幾何の世界(ポアンカレの円盤モデル)です.
この円盤内を旅する人は,円の縁(世界の果て)に近づくほど時間がかかる.つまり,[世界の果てに到達するには無限の時間がかかる]ようになっています.
この世界で定義される直線(最短時間で移動できる経路)は,円盤世界の縁で直交する円弧です.
エッシャー作品(図(左))の円盤は,魚の流れを示す白い線で分割された双曲面の[4,3,4,3,4,3]分割のようにも見えますが,実は,図(中)に示すような,黒い線で分割した{8,3}正則分割です.
白い線は,双曲幾何の円盤世界の縁に80°で交差し,直線ではないのです.
図(中)の正8角形の黒い線がこの円盤世界の直線であることは,図(中)に書き込んだ赤い円弧(いずれも円盤縁で直交する円弧)を見れば理解できるでしょう.

 

 

 

 

 

 

 

 

 

 


双曲平面の正8角形タイルは,双曲平面の直線(円盤の縁で直交する円弧)で囲まれています.
タイルの大きさは円盤の縁に行くほど小さく見えますが,円盤内は無限に広い双曲幾何平面なのですべて同じ大きさです.
1つのタイルの中には4匹の魚がおり中心に4回軸があります.
正8角形の頂点には3回軸があり,魚の白い流れは3回軸の場所に集まっています.
エッシャーは{8,3}分割に用いる直線をわざと隠し,白い流れが分割であるようなトリックを見せます.もちろん,白い流れの円弧(直線ではない)に関して鏡映対称はありません.


参照:「美しい幾何学」p.142,143

パイレックス・ガラスを惜しむ

■パイレックス・ガラスとは

シリカガラスSiO2の軟化点は1700°Cと高温です.ガラスには明確な融点はありません.初めから乱れた構造ですから液体状態の固体ともいわれます.固体での変形が起こるのは軟化点~1900°Cあたりまでで,それ以上の温度では液体になります.シリカの正4面体ネットワーク中の所々にCaイオンやNaイオンが入ったものが,ソーダーライムガラス(青板ガラスとも呼ばれる)で,ガラスの融点も軟化点も下がり成型が容易になります.しかし,Naの熱振動振幅は大きく,ガラスの熱膨張率は大きくなります.ホウケイ酸ガラスは,ホウ素Bを添加したガラスで,ナトリウムNaの量を減らせるので,熱膨張率を小さくできます.これがpyrexパイレックスガラス(Corningの商標)で軟化点は820℃位で,Nonexという非膨張ガラスの処方も開発されました.パイレックスガラスは,キッチンのベーキング皿にも,温度計にも,ビーカーなどの理化学機器にも,1949年に完成したパロマーのヘール望遠鏡の巨大鏡(回転放物面)にも使われています.この巨大鏡はパイレックスガラスの直径5mのガラスのキャストディスクで20トンもあります.この巨大なガラスのキャストディスクの製造では,アニーリング・オーブンに入れて10か月もかけて徐冷したそうです.これを現場に運び凹面(回転放物面)に研磨しました.


■パイレックス・ガラス製造中止
2008年3月14日に パイレックス・ロール板の生産中止をコーニング社は決めました.パイレックスと言えば耐熱ガラスの代名詞で,理化学機器にも使われていますが,望遠鏡用の 大きなガラスも作らなくなりました.どうなることか心配です.
今日,コーニング社の製品は,スマートフォン用のGorillaGlassというカバーガラスやエレクトロニクス用の薄い強化ガラスにシフトしたようです.

以下の写真はコーニングガラス博物館の様子で面白そうです.


https://media-cdn.tripadvisor.com/media/photo-m/1280/19/bd/64/98/corning-museum-of-glass.jpg

非可積分の方程式をコンピューターが解く

 

 

 

 

 

 

 

 

力学系を記述するラグランジュ方程式は作れるのだが,これが解けるとは限らない.
物理の演習では,解けるものしか扱わなかったのです.
実際の世の中は,解を関数で記述できない(解けない)方程式が大多数です.
系の運動を支配する法則(ニュートン力学の方程式)は明確なのに,解が関数で記述できないのだ.
でも解は存在するのです.コンピュータによる数値計算により,運動は逐一決定できる.
しかも,予想もつかない挙動ーカオスーが起こる.このようなことを最初に指摘したのはポアンカレでした.

ーーーーーーーーーーーーーーーーーーー
●1766 オイラー「変分法の原理」
    (オイラー, ラグランジュ)

●1800 ラグランジュ「解析力学」
  エネルギー散逸がない系は,オイラー=ラグランジュ方程式が作れる.
   (オイラー, ハミルトン, ヤコービ)

●1900 ポアンカレ
  可積分の方程式はごくわずかで,大部分の方程式は非可積分(関数で記述できない)
  ニュートンの法則に従う系の運動は,可積分と決めつけてはいけない.

可積分 → 予測可能(安定な軌道) 互いに独立な因果列
非可積分→ カオス的        干渉し合う因果列
ーーーーーーーーーーーーーーーーーーー

■2重振り子の例

 

 

 

 

 

 

 

 

 

 

 

 

上図のような2重振り子の運動です.今回は物理演習のようですが,
数式に囚われる必要はありません.重要なのは,振幅が小さい範囲なら
運動は線形の微分方程式に近似できるので,2種類の周波数の振動が重畳
された運動になる.つまり,関数で記述できる安定な周期的な運動になる
という事です.そして,これに対比される次に話題になる振幅の大きい
2重振り子運動では,運動は関数で記述できず,予想もつかない
とんでもない運動をするということです.

(注)ここでは,ラグランジュ関数やラグランジュ方程式を説明せずに用いています.
これらを学習したい方は,EMANの物理学https://eman-physics.net/analytic/lagrange.html
などが参考になります.

2重振り子のラグランジュ関数は正確に作れます.
次に,ラグランジュ方程式を解かねばならないのだが,これが解析的には解けない(関数で記述できる解がない).

◆振幅の小さいとき
Φ,ψ の振動範囲を微小に制限して(Φ,ψの2次までを残す近似)解く.
これは解けます(物理の演習問題).
計算の詳細は以下に載せました.http://sgk2005.saloon.jp/blogs/blog_entries/view/46/ddf8d815a70840c192d0532618218407?frame_id=54

結論
ラグランジュ方程式(連立方程式)を微小振動の範囲とし線形近似したので,解のΦ,ψは,それぞれ2つの固有振動(基準振動)の重ね合わせになり,それほど複雑な振動ではない.いずれにしろ周期的な(予測できる)振動になります.


◆一般論(振幅の大きいとき)
振幅が大きくなると,ラグランジュ関数の線形近似がなり立たないので,ラグランジュ方程式は解析的には解けません.でも解は実在するはずです.
将来,誰かが巧妙な方法で解くのではないかと期待しつつ,得られたその解は,解析的ではないにしろ振動範囲が小な場合と本質的に大差はないのではないかと想像するのは自然なことです.
系のラグランジュ関数 は完全に正しいし,ラグランジュ方程式も正しいのですから,解析的に解けないと言っても心配ないのではと思うでしょう.
これが誤りであることを証明したのがポアンカレでした.

現代は,コンピュータを用いた計算が高度になり,力ずくで動きのシミュレーションがなされるようになりました.正しい方程式は実在するのですから,関数による軌道の記述は出来なくても,動きは逐一決定されるはずです.
しかし,初期条件(初期値)により,予想もつかない挙動が見られます(カオス).ともかく,そのような運動の実験とシミュレーションの例を,youtube動画で見てください.とんでもない現象が見られます.


◆第1の動画は実験
スタートする初期値によって運動の様子は異なります:



◆第2の動画はシミュレーション
Double Pendulum Chaos Light Writing (computer simulation) 1

 

イスラム・パターンの作り方

ドアや家具や壁に見られるイスラムの美しい模様を作製する技術は千年以上の歴史があります.イスラムのデザインの特徴は,対称性の高い星型がちりばめられていることです.
繰り返し模様全体を支配する対称性は,17種類の平面群のどれかであるはずだし,並進(周期性)と両立しうる回転対称は,2,3,4,6回軸に限られるはずです.しかし,イスラムの模様の中に散らばる星形は対称性が高いのです.高い対称性はもちろん模様全域に作用はできません.その星形の内部にだを作用域とする局所的なものです.

 

 

 

 

 

 

 

 

 

 

 

上図の模様を例にとると,8回対称の青い星型が,正方形格子の周期で配列していることがわかります.青い星型にある8回対称性は,青い星型内部と緑の周囲領域,草色の星形5角形の領域までは有効ですが,オレンジ色の8角形までは有効ではありません.
青い星の中心にある8回対称軸はオレンジ色8角形の付近では,4回対称軸に低下してしまいます.これは,周期的な平面では8回対称軸は存在できない(正8角形のタイルでは平面を張れない)から当然のことです.
ある点のまわりの対称性という言葉は注意が必要で,その点周囲の「局所的」対称性を指す場合もありますが,平面「全域」で有効な対称性を指すのが普通です.この例では,青い星型の対称性は8回対称ですが,この星の中心にある回転対称軸は4回対称軸です.
このパターンの単位胞は,オレンジ色の8角形の中心を結んでできる正方格子の1つの内部です.

■Girihタイル(装飾線が描かれたタイル)

イスラムの繰り返し模様の壁はGirihタイルという手法で作れます.
正方形と正8角形を組み合わせた平面のタイル張りの例を,下図(a)に示します.このテッセレーションは,シュレーフリの記法で(4,8,8)と記述されます[1つの頂点のまわりに,正4角形,正8角形,正8角形が集まっている状態].

 

 

 

 

 

 

 

 

 

(b)図は,正4角形および正8角形の内部に装飾線を描いたGirihタイルです.
平面をGirihタイルでタイル張りしておいて,タイルの縁の輪郭を消すと(c)図のパターンが得られます.
デザインを作れる以下のウエブサイトがありますのでお試しください.
https://girihdesigner.com/


■ここで,始めに掲載したイスラムの模様も,上の例と全く同じであることを確認してください.
始めに掲載した模様の正4角形タイルや正8角形タイルの形は,草色の星型の中心を結んでいくと明らかでしょう.正4角形や正8角形の内部の装飾線はどのようなものであるかもお確かめください.

次元を上げて見る

 

 

 

 

 

 

 

 

私たちは,ものごとを考え解決困難なときに,次元を1つ上げて(失われている視点を一つ加えて)見ると,思わぬ解決策にはっと気づくことがあります.たとえば,今,新型コロナウイルス禍にあり,医学・疫学的視点と,経済活動視点の2つの視点に集中して,この危機を乗り越えようと必死の活動がなされています.しかし,政治的視点がなおざりにされています.不安定な遺伝子のウイルスはやがて消滅し我々は生き残るでしょうが,見えない次元に無関心でいると,そのときの社会体制は,監視や権力集中の社会に変貌しているかもしれません.歴史学者のハラリ氏は,そのように警告しています.パンデミックが変える世界ユヴァル・ノア・ハラリとの60分:
https://www.dailymotion.com/video/x7tjaoq

視点を上げる(次元を上げる)効果は,デザルグの定理を考えるとよくわかります.
ーーーーーーー
デザルグの定理とは
「⊿ABCと⊿A'B'C'があり,AA',BB',CC'を通る直線が1点Oで交わるなら.
直線ABとA'B'の交点P,直線BCとB'C'の交点Q,直線CAとC'A'の交点Rは,同一直線上にある」

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ーーーーーーー
高校とき幾何の教科書にこの問題が載っていました.
このデザルグの定理の証明は,実はとても難しいのです.3角形を直線が過る図形で生じる長さの比率に関するメネラウスの定理などを使う必要があります.
ところが,下図のように,この図形を平面(2次元)と見ずに,立体(3次元)にあると見ると,ごく当たり前のことを言っていることに気づきます.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2つの平面Ω(薄緑)とΩ’(薄青)が交差しており,△ABCは平面Ω上に,△A'B'C'は平面Ω'上にあるとイメージするのです.
光源Oから出る光が,△ABCの影を△A'B'C'に作っています(辺ABの影が辺A'B').従って,O,A,B,A',B' は,同一平面上にあり,この平面をΣ(薄燈)と名付けます.A,Bを通る直線も,A',B'を通る直線もこの平面Σ上にあり,P点で交差します.
一方,A,B,Pは平面Ω上に,A',B',Pは平面Ω’上にあります.
結局,P点は平面Ωと平面Ω’の交線上にあることになります.
同様にして,QもRも,平面Ωと平面Ω’の交線上にあり,デザルグの定理が証明できました.
高校の教科書では,このような証明は厳密でないとみなされるせいか,チェバやメネラウスの定理を使ってあくまでも平面図形として扱われます.

■デザルグの定理は,2次元で証明するのは難しいが,3次元では証明が要らないほど自明なのは何故でしょうか.
3次元でこの図のような模型があったとして,これを2次元に射影する(高さ方向をぺちゃんこ)と,直線が交差する状況は変わらないのですが,長さや角度の情報が失われてしまいます.△ABCと△A'B'C'は,それぞれ別の2次元平面にあったものですが,ぺちゃんこにされて1つの平面(紙面)に入ってしまいました.
私たちは,高い次元(2次元の世界から3次元の世界)を想像するのは困難です.デザルグの定理でこれを思い知らされます.

■デザルグは,17世紀初頭のフランスの数学者,建築家.透視図法を発展させた射影幾何学の祖です.ダビンチなどの画家たちは,遠近法や透視図法を古くから用いていましたが,その数学を固め射影幾何学の本を出したのはデザルグが最初です.
その後,射影幾何学が本格的に研究されるのは,200年後の19世紀中葉,ポンスレー(フランスの数学者.ナポレオンのロシア遠征に従軍し,ロシアで捕虜のときに射影幾何学を研究した)を待たねばなりませんでした.
射影幾何学自体,作図など重要な応用がありますが,やはり,19世紀中葉に現れた非ユークリッド幾何学のモデルを作るための重要なツールとなりました.