掲示板

note.com投稿記事

ダイヤモンドのブリリアン・カットの数学

 

 

 

 

 

 

 

 

■ダイヤモンドの価値は,4C[Carat重量,Color色,Cralityキズ,Cutカット]で評価されます.ここでは,数学的に興味のあるカットのプロポーションについて述べました.ラウンド・ブリリアン・カットのダイヤモンドが最も輝くようにしたプロポーションを理想カットといいます.理想カットは1919年にベルギーのMarcel Tolkowsky(数学者でダイヤモンドのカッター)が計算しました.今なら,コンピュータもあるし,光線追跡のソフトウエアもある時代で,理想カットの形(プロポーション)を見つけることは容易でしょうが.1919年にどのように計算したのか,興味深いことです.多分,閉じ込められた光線が全反射を繰り返す光路に注目したのでしょう.

 

 

 

 

 

 

 

 

 

ダイヤモンドのブリリアン・カットの各部の名称を図に記載してあります.正面の平らな面をテーブル面,上半分をクラウン,下半分をパビリオンと呼びます.真ん中のガードル面に対してクラウン斜面のなす角度をβ,パビリオン斜面のなす角度をαとしました.

 

 

 

 

 

 

 

 

 

 

 

テーブル面の左隅Aに入った光線(赤色)が,ダイヤモンド内部を進み,後方の左パビリオン斜面で全反射され,次に,右パビリオン斜面で全反射され,テーブル面右隅Bに戻り,前方に出て行く光線もありますが,テーブル面右隅Bで一部は反射され内部に戻る光線(青色)になります.この光線は全反射を繰り返し内部に閉じ込められることになります(青色).
この図で追跡した光線は,テーブル面の左隅Aから出て,テーブル面の右隅Bに達する左右対称の光路です.ダイヤモンドの屈折率n≒2.417を用いて,この光路のテーブル面での入射角φ,屈折角γに対する屈折の式,sinφ=n・sinγ から,左右対称になる入射角φ(テーブル面の垂線と入射光線のなす角)を求めると,21°になります.というのは,左右のパビリオン間でテーブル面と平行になる光路ですから,左のパビリオン斜面での反射の法則(反射角αはパビリオン角αに等しい)から,γ=90°ー2α=8.5°となることが決まるからです.ここで,パビリオン角α=40.75°を用いました.

■屈折率の高い媒質中に光が閉じ込められるのは,全反射を起こし易いからで,ダイヤモンドの全反射の臨界角θ(入射角でいうと)は,sinθ=1/nだから,θ=24.4°(反射面から測った反射角で言うと,65.6°)です.
テーブル面の出口で反射されて内部に戻った一部の光線は,パビリオン面とクラウン面で全反射を繰り返し内部に閉じ込められます.パビリオン角α=40.75°,クラウン角β=34.50°というのは実によくできた設計です.
全反射によりブリリアン・カット内に閉じ込められた光線の経路は,一周すると,これに平行な経路に戻ることを証明するために,次の作図をしてみました.BC(赤色)の直線はダイヤモンド内部で全反射を繰り返す光線(青色)を外に引き伸ばしたものです.その代わりに,ダイヤモンドも反射面を共通にしてつないで並べました.結局,全反射を4回繰り返すと光線が平行になるということは,このように配置したダイヤモンドが4つで回転角が0に戻る(初めの向きと同じ)ことからわかります.

 

 

 

 

 

■カットの形を評価するには,そのカットの形を磨き直して理想カットにするとしたら,重量がどれだけ減るか(カット減点%)で表します.カット減点5%までは理想カットと見做されます.さて最後になりましたが,トルコフスキーの理想カットのプロポーションを表紙の図に示しました.トルコフスキーはガードル厚には言及せず,ナイフ・エッヂだったそうですが,現実にはナイフ・エッヂは作れず,ガードル厚は必要です.
■(注)ラウンド・ブリリアン・カットとは,58のファセット面を磨き上げた形(キューレットも1面と数えます)です.ダイヤモンドは立方晶系の結晶ですから,複屈折はありません.また,光の分散もそれほど強くなく上品です.虹色にぎらぎらするようならキュービック・ジルコニアなどの疑いがあります.
クラウン面の高さや,パビリオンの深さが最適でないと,テーブル面の中が暗くなります.

円に内接する正5角形の作図

折り紙では近似的な正5角形(星型)が出てきましたが,これから扱うのは数学的に厳密な正5角形についてです.
半径1の円に内接する正5角形の1辺の長さを求めましょう.
この正5角形の1辺の長さをxとします.
△BACと△ADCは相似(相似比が黄金比Φ)で,形は2等辺三角形(等辺xとすると,底辺Φ・x)です.Φ・x=x+(x/Φ) ですから,Φは黄金比の方程式
 Φ^2ーΦー1=0を満たします.この方程式の解(Φ>1のもの)は,Φ=(1+√5)/2 です.

 

 

 

 

 

 

 

 

 

 

 

 

 

■次に,△BCEと△BOFとが相似であることを利用し,
1:(Φ・x)=OF:CE=(1-y):(x/2) が成立するので, y=1ー1/(2Φ) 
ただし,y=√[(x/Φ)^2-((Φ・x)/2-x/Φ)^2]=√[x^2ー(Φ・x/2)^2]=x√[1-(Φ/2)^2] 
x=y/√[1-(Φ/2)^2]=[1-1/(2Φ)]/√[1-(Φ/2)^2]=(√[10-2√5])/2=1.1756

■ 作図
半径1の円に内接する正5角形の一辺の長さx=(√[10-2√5])/2を作図する方法
(証明)ピタゴラスの定理を2回使います.

 

 

 

 

定規とコンパスで作図できる長さ

私は,yahooブログ 「数学と社会の架け橋<数学月間>(2012.5~2019.3)」に,発行している同名のメルマガまぐまぐのバックナンバーを保存していました.メルマガはテキストなので,必要な図はどこかに保存したもののリンクを張らねばなりません.そこで,必要な図や写真はyohooブログに保存していました.しかし,昨年yahooブログが閉鎖しましたので,ブログ機能はlivedoorブログと数学月間の会のホームページに引っ越しました.
テキストは移動できたのですが,移動できなかった画像や写真があります.yahooブログに張ったリンク先が消えてしまったので後の祭りです.
今回Noteを始めて,それらの記事中から面白いものを優先し,図を作り直し再現しようとしています(新規の記事も並行して随時書きます).お付き合いのほどよろしくお願いします.記事の候補全体は,数学月間の会ホームページにありますので訪問ください.その中で再現すべき記事のリクエストがありましたらお寄せください.まだNoteの使い方になれないので皆さまのお気づきのことをお教えください.記事に数式が必要なこともありますが,Texが使えないようなので,まとまった数式は画像にして埋め込むことにしています.

今回再現するのは,以下のメルマガの記事です.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.10.23] No.238
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今日は,たいへん古典的だが,重要な証明問題を扱いましょう.
ギリシャの幾何学者達が研究した不可能作図とは
以下のものがあります.

(1)与えられた正立方体の2倍の体積の正立方体を作れ
(2)与えられた円と同じ面積の正方形を作れ
(3)任意に与えられた角を3等分せよ
これらは,定規とコンパスだけを有限回使って作図できるか?
ということです.

■なぜ作図できないか
(1)は,2の3乗根の作図が必要です.
(2)の円と同じ面積の正方形を作る方針を以下の図に示します.


どうしてこの作図ができないのかわかりますか?
与えられた円の半径をrとします.まず,円と同じ面積の長方形を作りましょう.もし,縦r,横aの長方形が作れたら,r・a=x^2 となるxの作図は可能です.問題は,円の面積と同じ縦 r,横 a=πrの長方形を作るところで,
円周の半分の長さπrの線分を作図する方法が,定規とコンパスではないからです.無理数πが作図できません.

 

 

 

 

 

 

■直線定規とコンパスだけを有限回繰り返し用いて作図できる長さは
2つの有理数の,加法,減法,乗法,除法,開平だけです.
作図方法は,以下をご覧ください.
条規とコンパスで作図
開平を繰り返せは,2のべき乗根(4乗根,8乗根,...)は作図できますが,例えば,立方根は作図できません(この証明は難かしいのでスキップ).

(3)任意の角度の3等分が作図できないわけ.
角度3等分の方程式は x^3-3x-a=0 で,
例えば,与えられた角度が60°ならa=1の方程式です.
60°の3等分の方程式は,x^3-3x-1=0 となりますが,この3次方程式は,p+q√r (ただし,p,q,rは有理数)の型の解を持たないので
この角度の作図は,定規とコンパスでは不可能です.
もちろん,60°の3等分の20°は存在しますが,
定規とコンパスだけを使う方法では作図できないということです.
詳しくは,以下をご覧ください.


■任意の角度の3等分
任意の角度∠XOYの3等分がなされたとします.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

抵抗ラダー回路とフィボナッチ数列

フィボナッチ数列F(n)は,1,1,2,3,5,8.13,21,34,.....のような数列です.
F(n)=F(n-1)+F(n-2) と再帰的に定義されます.
この数列は,いろいろな所に現れます.得られた数列が,フィボナッチ数列であることを証明するには数学的帰納法を用います.
今回は,その典型的な例として,抵抗ラダー回路を取り上げましょう.

■抵抗ラダー回路

ラダーとは梯子のことで,梯子型に抵抗を並べた回路を,抵抗ラダー回路といいます.例えば,表紙の図は3段のラダー回路です.

 

 

 

 

 

 

 

 

A-Bの端子(入力側)から見たインピーダンスをZ_i,
C-Dの端子(出力側)から見たインピーダンスをZ_oとします.
この3段のラダー回路は,A-B側(入力側)にR1の抵抗があるが,C-D側(出力側)にはないので,左右対称ではありません.入力側から見たインピーダンスと出力側から見たインピーダンスの比から,減衰率Z_i/Z_o≡Aが定義されますが,A>1なのでこの回路はアッテネータ(減衰器)として使えます.
抵抗値をすべて同じR1=R2=1とすると,
ラダーの段数mを増やしていくと,減衰率A(m)=F(2m+1)/F(2m-1)は,2/1,5/2,13/5,34/13,...とフィボナッチ数列が出てきます.
(参考)n=1から3までの計算は以下にありますのでご覧ください.
証明は数学的帰納法を使う練習になりますので,各自試みてください.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■ラダー回路の応用例
ラダー回路は,アナログ信号が入力されたときに,そのアナログ信号の大きさを,瞬時に8水準に分類する(8ビットのデジタル化)回路(これを8ビットのAD変換といいます)に使われたりもします.次の図をご覧ください.

 

 

 

 

 

コンパレータが7個並列に並んでいますね(カスケード結合).
入力信号の大きさを8水準に分類するのは,7個のコンパレータの働きで,
その境界値となる7段階の基準電位をそれぞれに供給します.
この7つの基準電位を発生するのが,一番左の直列に並んだ抵抗ラダー回路です.nビットのAD変換には(2^n)-1個のコンパレータと基準電位がいります.

正5角形の作図いろいろ

 

 

 

 

 

 

 

 

■正5角形の性質
正5角形の中に相似な2等辺3角形(頂角36°)が次々に組み込まれていく様子を見てください.赤い2等辺3角形→緑の2等辺3角形→青い2等辺3角形の順です.2等辺3角形の辺の比率は,いつもΦ:1で,Φは正5角形の対角線(星形の辺),1は正5角形の1辺です.このとき成立する方程式,Φ2-Φー1=0を解いて(Φ>1をとる),Φ=(1+√5)/2=1.6180・・が得られます.Φは黄金比の値です.

 

 

 

 

 

 

 

 

 

 

■正5角形の実用作図法
この作図はつぎの式が成り立ちます.AH=HB=1/2,MH=√3/2 であるので,PH=(√3ー1)/2,従ってPB=(√[(√3-1)2+1])/2=(√[5-2√3])/2
AB/PB=2√(65-26√3)/13=1.6138・・・
この作図法は,イスラームのタイル作図で便利ですが,厳密な正5角形ではありません.しかし,誤差は0.26%なので実用上問題ない恐るべき精度です.

 

 

 

 

 

 

 

 

 

 

 ■厳密な正5角形の作図
AB=1,AH=1/2,PH=1 ですので,AP=(√[1+22])/2=√5/2
従って,QP=(1+√5)/2=Φ
この作図で得られるのは厳密に正5角形であることが証明されました.

 

 

 

 

 

 

 

 

■折り紙で作る正5角形(1)の精度
この図は折り紙で正5角形を作る原理を示しました.y=3xの直線とx軸のなす角θを求めると,θ=arctan3=71.5651・・° となりますが,正5角形では72°になるべきです.この誤差は.0.6%ですのでかなり良い精度と言えましょう.他の角度は,72.1087(0.2%),72.6524(0.9%)程度です.(カッコ内は誤差)

 

 

 

 

 

 

 

 

 

 

 

■折り紙で作る正5角形(2)の精度
折り紙の一太刀切で大変作り易い星型です.この原理は以下の図を見てください.正5角形(星型)の一辺の中心角は360°/5=72°ですから,一太刀切りに対応する中心角は36°です.
以下の図を見ると,一太刀切りの中心角は,35.783°(36°からのハズレは-0.6%)to,36.870°(+2.4%)に収まっています.