掲示板

平面群

繰り返し模様$$pmm2$$★

今回は壁紙模様の第9類で,国際記号で$$pmm2$$,ロシア式記号で$$(b:a):2・m$$です.

対称性$$2・m$$の単位胞図形を長方形の格子$$a$$軸,$$b$$軸で並進してパターンができます.
以下の図は,この対称性のパターンとはわずかに違うのですが,どこが違うかわかりますか?
間違い個所を見つけてください.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 例えば,ダイアモンドを頂点とする長方形が単位胞ですが,この単位胞の中身の対称性は,どうでしょうか.中心に2回回転軸はありますか?確かに,垂直に鏡映面はあります.よく見ると,コイルの巻き方は鏡映対称を満たしていますが,2回回転対称とは矛盾します.従って,厳密に言うと単位胞の対称性は$$2:m$$でなく$$m$$ですので,パターンの対称性は,$$(b:a):m$$,国際記号では$$pm$$の繰り返し模様になっています.
それでは,厳密にこの対称性$$(b:a):2・m$$である別の例を探してお知らせください.日本やイスラムの伝統模様で見つかると良いのですが.不思議なことになかなか見つかりません.自分で作った方が速いかもしれません.

もし,先に掲載した例を修正するなら,渦巻きコイルでなく同心円に変更します.蔓の重なり方も紙面上下の立体感を失くして平面内にある様に変更します.表紙の図のようになります.ただし,蔦の重なり方を修正していないので,2回対称を満たしますが,鏡映対称に矛盾します.両者を満たすには,蔦の重なりが,平面上にある様に修正する必要があります.しかし,あまり面白いデザインではないので,もっと良いデザインに皆様ご挑戦ください.

繰り返し模様$$p4gm$$★

対称性の第11類です.国際記号$$p4gm$$,ロシア式記号$$(a:a):4・\tilde{a}$$

このパターンは,4回対称の単位胞を,2つの等価な互いに直交する映進面で繰り返し広げて得られる.
縦,横の映進面$$\tilde{a}$$は,群$$4・m$$に同型な,法による点群$$4・\tilde{a}$$の4回軸を通る.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 上の図はこの対称性のエジプトのパターンと言いたいが,厳密に見ると4回軸はなく2回軸になっている.
(間違い探し:4回対称性を破っているところを探しなさい)

 

 

 

 

 

 

 

 

 

 

 

 

 

 縦,横の太い赤線は鏡映面.細い赤線は映進面.映進面の交点に4回回転軸がある.太い線の交点には2回回転軸が生じている.

単位胞の面積は,非対称要素(モチーフ)が8個で出来ている面積に等しい.

 

 

 

 

 

以下の図は,pngtreeのサイトから借用したもので,今回の対称性の図の例です.

繰り返し模様$$p4mm$$★

繰り返し模様の対称性の第12類は,$$4・m$$の図形を正方形単純格子$$(a:a)$$で並進させて得られる.

この対称性は,国際記号で$$p4mm$$,ロシア式記号で$$(a:a):4・m$$と記述される.
この対称性のパターンの例は

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

非対称要素(モチーフ・タイル)は,単位胞の1/8です.

この対称性の日本の伝統模様はたくさんあります.
例えば,以下の七宝つなぎなどです.イスラムの模様との交流もあったと思われます.

 

 

 

 

 

繰り返し模様$$p3$$★

壁紙模様の対称性の第13番目の類は,対称性3の図形を,60°で交差する2つの等価な並進軸$$(a/a)$$で並進して得られる.

国際記号で$$p3$$,ロシア式記号で$$(a/a):3$$です.今回から始まる残り5つの対称性の類(第13~17)は,正3角形のメッシュに属します.

 

 

 

 

 

 

 

 

 

 

 

 

 

等価な図形が隙間なく平面を充填しているこの対称性のパターンを以下に示します.モチーフ(非対称要素)は,正3角形メッシュ座標を作っている頂点に集まる曲線で囲まれた形です.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

非対称要素(モチーフ)3つで,単位胞の面積に等しくなります.鏡映対称はありません.

以下の例は,アルハンブラの有名なモザイクです.これは対称性$$p3$$の例です.ただし,色の区別はしていません.

 

 

 

 

 

 

 

 

(参考)以下の「千鳥」のパターンの対称性は$$p3$$ではありません.何故でしょうか?

 

 

 

 

 

 

 

 

 

 

 

(解答)上図の「ちどり」のパターンは,単位胞の菱形の頂点に6回軸がありますので,$$p3$$ではありません.このパターンは,後ででてくる$$p6$$の対称性です.単位胞の中を,2つの千鳥図形で埋まますが,この千鳥の形は,等価なモチーフにさらに3分割できますから,非対称要素は,千鳥を3分割したものになります.

繰り返し模様$$p3m1$$と$$p31m$$★

■第14の類は,国際記号で$$p3m1$$,ロシア式記号で$$(a/a):m・3$$と記述します.対称性$$3・m$$の図形を60°で交差する等価な2つの軸$$(a/a)$$に沿って並進させて得られますが,鏡映面(赤色)の入り方が,並進軸(青色)に直交している.

 

 

 

 

 

 

 

 

 

 

非対称要素(黄色)が6個で単位胞を埋める.

■第15の類は,国際記号で$$p31m$$,ロシア式記号で$$(a/a)・m・3$$と記述します.並進の格子$$(a/a)$$は同じですが,鏡映面の入り方が,並進軸方向に平行である.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

上の図で鏡映面は格子に重なっている.非対称要素(黄色)が6つで単位胞を埋めている.

■この両者の区別は多くの書物で混乱がみられます.分かりにくいので,もう少し詳しく説明を加えましょう:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

美しい幾何学,p.100,p.110より引用

 

繰り返し模様$$p6$$と$$p6mm$$★

■第16の類は国際記号で$$p6$$,ロシア式記号で$$(a/a):6$$です.

以下のペルシャのパターン(Owen Jones)の例では,黒い6角形の内の花は厳密には6回対称ではありませんが,これを6回対称とみなすと,周りに風車がまわっているような6回軸の配列のパターンが見えます.

 

 

 

 

 

 

 

 

 

 

6回回転軸が通る点を頂点とする平行4辺形が単位胞.非対称要素モチーフが6個で単位胞を埋めます.

 エッシャー作品の例

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■第17の類は国際記号で$$p6mm$$,ロシア式記号で$$(a/a)・m・6$$,あるいは$$(a・a):m・6$$です.

$$p6$$の対称性に鏡映面が加わりますが,並進軸に平行な鏡映面も,垂直な鏡映面もあります.

 

 

 

 

 

 

 

 

 

 

 

非対称要素である直角3角形が12個で単位胞を埋めます.

 

 対称性の法則をもっと利用すると,アーティストがデザインパターンのモチーフを変形するのが容易になる.

壁紙模様の対称性とその心理効果★

人間は様々な用途で無限に繰り返す平面パターンを使います:壁紙,寄せ木細工,タイルの床,瓦屋根,陶器や装飾石の壁,レンガや敷石,道路や広場の舗装,色織物,カーペットや編物,同一物の密な充填,金属やプラスチック板から標準物を大量に打ち抜く,その他の多くの分野で利用されます.

自然界の網目パターンは,魚の鱗,生体組織の細胞,ハチの巣,マツカサの鱗片,などの配列で見られます.特に興味深いのは,結晶中の,原子・イオン・分子が配列した網平面です.もちろん,これらを直接見ることはできませんが,X線や電子線の回折や,走査型顕微鏡を用いて観測できます.
網目パターンから受ける印象を分析すると,芸術家が特定の視覚効果を伝えるために,特定の対称性クラスを意識的に選択する法則を確立できるかも知れません.

例えば,斜交する並進軸を持ち,対称面を持たないパターン(図112)は,斜め方向の動きを強調したい場合に適しています.

 

階段,ロビー,エスカレーター,地下鉄の傾斜トンネル,アーチ橋のフェンスなどの壁を飾る際に,芸術家はこの問題に遭遇します.

 

 

 

 

 

 

 

 

 

 

図117                  図121                  図123

水方向の並進軸はあるが,垂直方向の対称面を持たないパターン(図115,117参照)は,特定方向として水平面に沿った動きを強調しているので,地下鉄や回廊の水平通路の装飾に用いると成功します.対称面があると,それらに垂直な方向への運動を止めます.例えば,図121,123などのパターンは,水平方向には静止しているように見えます.図121では,2回軸が存在することで,上下方向への運動の概念が生まれますが,図123では,それらの回転軸が存在しないので,上方向,あるいは一般的に,垂直な一方向の運動の印象を与えています.
図121は,回廊の水平な床や天井の装飾にふさわしく,図123は, 地下鉄の昇降路の床や天井の装飾に適しています.

 

 

 

 

 

 

 

 図128           図130           図137           図147

水平や垂直の対称面のシステム(図128,130,137,147)がいくつか存在することで,静止休息,記念碑性,不動性,重力などの印象を醸し出します.興味深いことですが,(b:a):2・m型の対称パターン(図128 と 130)は,長い間,壁紙に使用されてきました.そして,図137や147に示すようなさらに対称的なパターンは,寄せ木,天井,ステンドグラス窓などには使われました.
奇妙な静止のない印象は,主要部分に映進面がある対称パターン(図116と120)で生み出されます.言葉でうまく表現できないのですが,これらのパターンの中の図形が,押し合い,転がり,絡み合い,群がって動きがあります.

 

 

 

 

 

 

 

           図116                    図120

このタイプの対称性は,他の対称性よりも出会う頻度は少ないのですが,それは,他のものよりも構成や認識が困難であるためで,例えば,見本市会場や遊歩道などのデザインに利用されることがあります.

 

 

 

 

 

 

 

   図132            図139              図145

特に興味を惹くのは,対称面がなく,3,4,6回回転対称軸で特徴づけられるパターン(図132,139,145)です.このようなパターンは,そのダイナミックさから,ダンスホールなどの大勢の人が無秩序に動くことを想定した施設の床や天井に適しています.図116のようなパターンと合わせて,文化公園の広場やサーカスのテントのアリーナ,フローティング・パネルなどの装飾に使用されています.全体として静止休息の奇妙な印象と細部に見られる動きは,普通の対称面と映進面が交互に繰り返すパターンのせいで生じています(図12,135,142).静止休息と運動の印象のどちらが支配的になるかは,フレーム・ワーク(垂直,水平線に)に対するパターンの方位に大きく依存します.

 

 

 

 

 

 

 

   図135            図142

例えば,図12はこの本に掲載している向きでは,動きの印象が静止に打ち勝ってしまう.特別な注意を払わずにパターンを見ると,対称面を見落とすのです.
一方,図12と同じ対称性を持つ図135は,動きよりも静止の印象が打ち勝ってしまう.それは,本を普通に置いたときに,パターンの対称面は垂直・水平線に沿ったフレームに平行であるからです.
観客が網目パターンを見たとき生じる印象に対称性が演じる役割について詳しく述べてきました.明らかに,対称性が美的鑑賞の唯一の要因ではありませんが,パターン構築の基礎となる法則を明らかにすると,装飾美術で対称性の果たす役割は,デッサンで遠近法が果たす役割と同じです.

 

■最後に,私が気に入っている映進面のある軽快な歩道タイル張りの写真を掲載します.美しい幾何学(技術評論社)p.93より

 



 

片面のみの平面★

片面のみの平面one-sided-planeと両面のある平面two-sided-planeとはどのようなものでしょうか.
ただし,平面は離散平面でも連続平面でも良いことにします.

 

 

 

 

 

 

             a    b     c 

図aと図bのどちらも,表面と裏面とでは性質が異なります.図aは,表面に+電荷が帯電し,裏面にはー電荷が帯電した電気二重層の例です.表面に沿って並進を繰り返す,あるいは,連続移動しても,途中で表面の性質が裏面の性質に変わることはありません.従って,表裏の2面(両面)が存在し,その境界となる「面を一周する」縁があります.
1面(片面)しかない平面は,メビウスの帯やクラインの壺から連想できるように,表面に居ると思って表面をたどって移動していくと(並進すると),いつの間にか自然に裏面になってしまう,さらに,そのまま進むと初めに居た表面にもどります.面は表裏2面あるようですが,実は1つの同じ面なのです.従って境界は存在せず縁もありません.図cがその例です.
aは極性平面, bは軸性平面, cは捩性平面,と呼ばれます.

■片面帯(one-sided band)の対称性
特異点のない図形の対称性について

特異点(線,面)の概念は,有限図形の特別な変換のクラスに関して導入されます.図形は,この特別な変換クラス以外の変換では,不動点を持たないとします.特異点のない無限図形を得る最もシンプルな変換は,直線に沿った並進(有限距離の平行移動)です.この並進を無限回繰り返すと,直線のどの点も無限回繰り返されて,同価点が無限個並びます.そして,その直線(並進軸)は特異線になります.特異直線に加えて,並進により自分自身に重なる特異な片面(極性)面を持つならば,その図形は片面帯(one-sided band)と呼ばれます.「帯」や「ロゼット」などは,普通に使われる用語で概念の定義があいまいですが,ここでは完全に専門科学術語として用いていきます.

帯に必要な対称要素は並進軸
地下鉄通路や交差点の縁飾り

 

 

[要約]上に示したのはone-sided帯の例です.この例の横方向に並進がある縁飾りはone-sided面としたので裏面が存在しません.表面と裏面があり両者の間に対称操作が定義できるのはtwo-sided面です.


横1行の図形全体が,直線ABに沿ってaだけ動かすと(図形内の互いの位置関係を変えることなく),図形の1つがその隣の図形に一致するように,図形の全体は始めと違う新しい位置に動きます.直線ABを並進軸と呼びます.距離aの変位をしても,無限の図形なら如何なる変化も起きないので,望むだけ何度でも変位を繰り返せます.図形の変位はABの方向でも,逆の方向BAの方向でも同様の結果になります.すべての平行移動の集合は,この無限図形に対する並進群という新しい対称クラスを作ります.図形の行を並進した結果,初期位置と一致するような,最短の並進距離aを単位並進,あるいは,周期といいます.1次元の並進軸はaと表記します.これは無限の図形で存在できる対称要素であります.特異点がある有限や無限の図形は,並進軸を持つことができません.なぜならば,並進軸があるならば,図形の特異点は無限に繰り返され特異点ではなくなるからです.

対称要素aだけの帯(モチーフ部分図形は非対称)の例を示しました.帯を投影している紙面は,考察中の線形飾りの対称面ではない(one-sided)と仮定します.わかりやすくするため,一番上の図の帯の例で,片面が黒もう片面が白の3角形のカードボードをイメージしましよう.すべての3角形が黒側を観測者に向けています.紙面が対称面でないなら,図形は片面帯で裏面はありません.この帯のタイプは,並進軸に極性があります.つまり,(左右が対称ではない)AB方向とBA方向とでは性質が異なります.この図の帯を左から右へ追ってみると,常に,黒い3角形の先端から出現し,逆向きに追うと最も短い辺から現れます.並進軸の方向に極性があると,知らず知らずのうちに前進する印象を与えます.

XXkoptsik-ch10-1

 

10.群論の基礎.古典結晶群

これまでの章で,形而下の幾何学図形や物質形態の対称性に関する古典論の基礎を,複雑な数学ぬきで説明した.近年,対称性の研究は広汎な新領域で充実が見られ,多くの新分野に応用されている. 
これらについて語るために,まず数学的知識を少しく補足し,群論の思想と表現を一貫して利用できるようにしよう.読者は最初に読む時は,この章と次の章の難しい所は,絵と例を見るだけにして飛ばしても良い. 

群概念の定義.
幾何学的あるいは物理学的対象物の変換群.抽象群.

現代の数学,物理学における群概念は,数,集合,関数と言った概念と同様に,基本的な概念である.既に何度も(対称)図形の対称変換群[(有限または無限の)図形において,各部分は互いに入れ換えるが,図形全体は不変であるような対称変換の作る有限群あるいは無限群]について言及したので,部分的にではあるがそれを知っている.不変性(変換が図形の構造を保存する)の要請は,図形の対称変換群の定義の基礎となっている. 
どのような図形変換を許すかにより,等長変換(isometric)群か非等長変換(nonisometric)(アフィン, 射影,トポロジ-,等)群かになる.回転群(第1種の変換),回転と鏡映の群(第2種の変換)のような直交群や,運動群(第1種と第2種の変換と並進の結合)は図形の計量特性(すべての線分の長さとそれらのなす角度)を保存する.いままでの所では,我々は変形のない(計量保存)図形変換である直交群と運動群とを扱つていた. 
アフィン変換群は,無限な図形,媒質で許される一様変形(伸張,圧縮,ずり)の集合からなる.等方で一様な空間はアフィン対称である。相似変換群(アフィン変換群の特殊な場合)は植物や動物の構造や成長の対称を記述する;相似変換は建築物の細部や,遠近法に従って描いた絵画に見られる. 
重要な非直交群の例は,図形の等価な部分の任意の置換である.この置換は図形を自分自身に変換する(例えば,結晶構造における同価な原子の置換全部が作る群,原子核構造における中性子の置換全部が作る群など).特殊な場合には,置換群は直交群に同型となることを後に知るであろう. 
変換の概念は,幾何学的対象(有限図形,連続体,離散体)に関してだけでなく,物質図形,スカラ-,ベクトル,テンソル場のような(物理的性質を担っている形而下の)物理的対象に関しても定義できる.このような対象は,直交変換群だけでなく,次のようなさらに一般的な変換群に従う: 結晶物理や結晶の構造解析で利用する反対称群と色対称群(次の章でこれらの群を学習する);素粒子理論で使われるユニタリ-群(ユニモジュラ-群を含む);斉次,非斉次の線形群;相対論で用いるLorentz(ローレンツ)群, Poincare(ポアンカレ)群;などである.これらのどの群も,それぞれの空間で,不変量(保存量)の集合と結び付けられている.しかし,その変換群が成り立つ対称の性質がどのようなものであろうとも,また変換そのものがどのような性質であろうとも,すべての変換群には,抽象群の公理的定義を満たす共通の特性が存在する*. 
-------------------------------------------------------------- 
*群論の基礎の平易な説明は,例えば,P.S.Aleksandrov(アレクサンドロフ)の本(1951)を見よ. 
--------------------------------------------------------------- 
   何らかの性質の元 $$g_{1},g_{2}, \ldots $$の集合が,群{$$g_{1},g_{2}, \ldots$$ }$$=G $$を作るとは,この集合で結合的な《積》という演算($$G$$中の任意の2元$$g_{i},g_{j} \in G$$の対に,元$$g_{k} \in G$$を対応させる:$$g_{i}g_{j}=g_{k}$$)が定義でき,次の2つの条件を満足することである: a)集合$$G$$には,任意の$$g_{i} \in G$$に対して$$g_{i}e=eg_{i}=g_{i}$$となる単位元$$e$$が存在する.b)任意の$$g_{i}$$に対して,$$g_{i}g_{i}^{-1}=g_{i}^{-1}g_{i}=e$$となる逆元$$g_{i}^{-1}$$が集合$$G$$に存在する.まとめると次の4条件になる.
Ⅰ.    $$g_{i},g_{j} \in G$$ なら,$$g_{i}g_{j}=g_{k} \in G$$
Ⅱ.    $$\left( g_{i}g_{j} \right) g_{k}=g_{i}\left( g_{j}g_{k} \right) $$
Ⅲ.    $$g_{i}e=eg_{i}=g_{i}$$
Ⅳ.    $$g_{i}g_{i}^{-1}=g_{i}^{-1}g_{i}=e$$
これらの関係は抽象群を定義する.Ⅰは$$G$$が演算に関して閉じていることを示し,Ⅱは結合法則,Ⅲは単位元の存在,Ⅳは逆元の存在を示す.積の演算を何にするかは,具体的な群に応じて定義する. 

例:結晶群 $$2/m$$
群$$2/m$$に同型な置換群と直交行列群

  有限図形の対称点群を定義している一様な直交変換の積は,これらの演算を引き続き行うことと理解する.この定義を用い,集合$$2/m$$では4つの群公理が満たされていることを確かめよう. 

   

 

 

 

 

 

 

 

結晶点群$$2/m$$の対称を与えるのは,例えば,つぶれたマッチ箱の形(平行四辺形を底面とする直角プリズム)である.図203に示したごとく図形の面に番号をつける.図形の許される対称変換に対応する数字の置換を書くと: 
$$1 \leftrightarrow \left( \begin{array}{@{\,} cccccc @{\, } }
1 & 2 & 3 & 4 & 5 & 6 \\[0mm]
1 & 2 & 3 & 4 & 5 & 6
\end{array} \right)$$  ,$$2 \leftrightarrow \left( \begin{array}{@{\,} cccccc @{\, } }
1 & 2 & 3 & 4 & 5 & 6 \\[0mm]
3 & 4 & 1 & 2 & 5 & 6
\end{array} \right) $$ ,$$\overline{1} \leftrightarrow \left( \begin{array}{@{\,} cccccc @{\, } }
1 & 2 & 3 & 4 & 5 & 6 \\[0mm]
3 & 4 & 1 & 2 & 6 & 5
\end{array} \right) $$ ,$$m \leftrightarrow \left( \begin{array}{@{\,} cccccc @{\, } }
1 & 2 & 3 & 4 & 5 & 6 \\[0mm]
1 & 2 & 3 & 4 & 6 & 5
\end{array} \right)$$

各置換の上の行には,自然の順序で数字が書かれている;下の行には,対称変換を行った後の順序が書かれている.例えば,軸2による180°の回転によって,面1は面3の位置に,面2は面4の位置に移ることなど明らかである.対称演算 $$1$$,$$2$$ ,$$\overline{1}$$ ,$$m$$ (対称要素と同じ記号で標す)と置換の間の対応は,1:1であり,それを両側向きの矢印で示した.得られた対応を使って,置換の積の演算を定義しよう.例として,右に書かれた演算を先に実行することにして,積 $$\overline{1}2$$ を求めてみよう:
$$\overline{1}2 \leftrightarrow \left( \begin{array}{@{\,} cccccc @{\, } }
1 & 2 & 3 & 4 & 5 & 6 \\[0mm]
3 & 4 & 1 & 2 & 6 & 5
\end{array} \right) \left( \begin{array}{@{\,} cccccc @{\, } }
1 & 2 & 3 & 4 & 5 & 6 \\[0mm]
3 & 4 & 1 & 2 & 5 & 6
\end{array} \right) =\left( \begin{array}{@{\,} cccccc @{\, } }
1 & 2 & 3 & 4 & 5 & 6 \\[0mm]
1 & 2 & 3 & 4 & 6 & 5
\end{array} \right) \leftrightarrow m$$

回転$$2$$ により面1は面3の位置に,反転$$\overline{1}$$ により面3は面1の位置に来る;従って,変換の積 $$\overline{1}2$$ は面1を面1に移す.同様にして,積 $$\overline{1}2$$ は面2,3,4を,それ自身に移すが,面5を面6に,面6を面5に移す.結局,変換の積 $$\overline{1}2$$ は,変換$$m$$ と同価である(等式の形で$$\overline{1}2=m$$と書く)という興味ある結果を得る.2つの演算の積$$g_{i}g_{j}$$ (右から左への順)を見つけていくと,結果を群$$2/m$$の乗積表の形にまとめることが出来る:

$$\begin{array}{c|cccc}
& 1 & 2 & \overline{1} & m \\[0mm]
\hline
1 & 1 & 2 & \overline{1} & m \\[0mm]
2 & 2 & 1 & m & \overline{1} \\[0mm]
\overline{1} & \overline{1} & m & 1 & 2 \\[0mm]
m & m & \overline{1} & 2 & 1
\end{array} $$            $$\begin{array}{c|ccc}
& \cdots & g_{j} & \cdots \\[0mm]
\hline
\vdots & & \vdots & \\[0mm]
g_{i} & \cdots & g_{i}g_{j} & \cdots \\[0mm]
\vdots & & \vdots &
\end{array}$$


この表を見れば,今問題にしている図形(図203)で許される対称変換の集合が閉性の公理「任意の2つの変換の積はやはりこの集合に属する」を満たしていることがわかる.結合則「3つの積$$g_{i}g_{j}g_{k}$$において,積は右から左に行うということを守りさえすれば,どのように括弧をつけてもかまわない」が満たされることを確かめることもさして困難ではない.群の単位元として働くのは恒等変換$$1$$ である.表から,$$2/m$$の各元に対して逆元が存在することもわかる(各元は自分自身が逆元になっている:$$g_{i}g_{i}=1$$).

  表を用いれば,演算を繰り返し行った結果を知ることもできる.例えば,演算$$2$$ の3乗は演算$$2$$ に等しいことがわかる:
$$2^{3}=2 \cdot 2 \cdot 2=2^{2}2=2$$, ただし,$$2^{2}=2 \cdot 2=1$$ を用いる.
同一の結果になる演算の冪は同一と見なすから,群$$2/m$$は4つの異なった演算から成ることになり,位数は4となる. 
$$2/m=\left\{ 1,2,\overline{1},m \right\} $$
  群$$2/m$$の生成元として$$1$$ を含まない任意の元の対をとることができる.生成元 に対する定義関係 $$2^{2}=1$$,$$m^{2}=1$$,$$2m=m2$$ が与えられれば,元 $$m$$,$$2$$,$$2m=\overline{1}$$ をかけ合せることにより,群$$2/m$$の乗積表を完全に作ることが出来る. 
   上で調べた対称演算と6つの数字の置換の対応から,対称群$$2/m$$と4つの置換から成る群とが同型となる.一般に,群$$G=\left\{ g_{1},g_{2}, \ldots \right\} $$ と $$F=\left\{ f_{1},f_{2}, \ldots \right\} $$とは,元間に1:1対応があり乗積表が一致するとき同型であるという.すなわち
$$g_{i} \leftrightarrow f_{i}$$,$$g_{j} \leftrightarrow f_{j}$$  なら,$$g_{i}g_{j} \leftrightarrow f_{i}f_{j}$$
群が同型であることが判ると,積の法則とこれから導かれるような結論は,すべて1つの群について確認されたものなら,同型の群に移し変えることができる.これは研究の範囲が限定できるということである.Cayley(ケイリー)の定理「あらゆる有限群は適当な置換群と同型である」が成り立つため,有限群の研究は置換群の研究に帰着する.
   置換群の集合は,直交結晶群の集合より大きい.例えば置換$$P=\left( \begin{array}{@{\,} cccccc @{\, } }
1 & 2 & 3 & 4 & 5 & 6 \\[0mm]
4 & 3 & 6 & 2 & 5 & 1
\end{array} \right) $$ の冪で作られる位数5の巡回群,すなわち群$$\left\{ P, P^{2}, P^{3}, P^{4}, P^{5} \right\} $$ ,
ただし$$P^{5}=\left( \begin{array}{@{\,} cccccc @{\, } }
1 & 2 & 3 & 4 & 5 & 6 \\[0mm]
1 & 2 & 3 & 4 & 5 & 6
\end{array} \right) =1$$,は結晶群のどれとも同型でない.
   逆に,結晶群は置換群とのみ同型という訳ではない.結晶物理への応用で重要な,直交変換に同型な3次の直交行列群を考察しよう.我々の図形の結晶軸$$a, b, c$$と直交座標系$$X_{1}, X_{2}, X_{3}$$の関係は図203に示してある.図形のすべての対称変換それぞれに対応して座標系の変換がある.例えば,回転群$$2$$は軸$$X_{1}, X_{2}, X_{3}$$ を$$X_{1}^{ ' }, X_{2}^{ ' }, X_{3}^{ ' }$$ にもちきたす.行列要素を$$D_{ij}=cos\left( X_{i}^{ ' }, X_{j} \right) $$ で定義すれば,3次の行列
$$\left( \begin{array}{@{\,} ccc @{\, } }
D_{11} & D_{12} & D_{13} \\[0mm]
D_{21} & D_{22} & D_{23} \\[0mm]
D_{31} & D_{32} & D_{33}
\end{array} \right) $$ を得る.
回転2 を表すのは$$\left( \begin{array}{@{\,} ccc @{\, } }
-1 & 0 & 0 \\[0mm]
0 & -1 & 0 \\[0mm]
0 & 0 & 1
\end{array} \right) $$ となる.
同様にして,以下の行列と対称変換の対応が定まる:
$$1 \leftrightarrow \left( \begin{array}{@{\,} ccc @{\, } }
1 & 0 & 0 \\[0mm]
0 & 1 & 0 \\[0mm]
0 & 0 & 1
\end{array} \right) , \overline{1} \leftrightarrow \left( \begin{array}{@{\,} ccc @{\, } }
-1 & 0 & 0 \\[0mm]
0 & -1 & 0 \\[0mm]
0 & 0 & -1
\end{array} \right) , m \leftrightarrow \left( \begin{array}{@{\,} ccc @{\, } }
1 & 0 & 0 \\[0mm]
0 & 1 & 0 \\[0mm]
0 & 0 & -1
\end{array} \right) $$
良く知られた行列の積の定義(左の行列の行と右の行列の列を乗ずる:
$$D_{ij}=D_{i1}D_{1j}+D_{i2}D_{2j}+D_{i3}D_{3j}$$)を使い,演算の積に対応する行列の積を見つけよう: 
$$\overline{1}2 \leftrightarrow \left( \begin{array}{@{\,} ccc @{\, } }
-1 & 0 & 0 \\[0mm]
0 & -1 & 0 \\[0mm]
0 & 0 & -1
\end{array} \right) \left( \begin{array}{@{\,} ccc @{\, } }
-1 & 0 & 0 \\[0mm]
0 & -1 & 0 \\[0mm]
0 & 0 & 1
\end{array} \right) =\left( \begin{array}{@{\,} ccc @{\, } }
1 & 0 & 0 \\[0mm]
0 & 1 & 0 \\[0mm]
0 & 0 & -1
\end{array} \right) \leftrightarrow m$$ , etc.
結局,対応する行列群と群$$2/m$$とは同型となる.
   行列群を用いると,3次元空間における点あるいはその位置ベクトルの座標変換が記述できる.例えば,斉1次変換は,3つの等式の形にも,行列の形にも書くとことが出来る:

$$\begin{array}{@{\,} c @{\, } }
x_{1} ' =D_{11}x_{1}+D_{12}x_{2}+D_{13}x_{3} \\[0mm]
x_{2} ' =D_{21}x_{1}+D_{22}x_{2}+D_{23}x_{3} \\[0mm]
x_{3} ' =D_{31}x_{1}+D_{32}x_{2}+D_{33}x_{3}
\end{array}$$ または $$\left( \begin{array}{@{\,} c @{\, } }
x_{1} ' \\[0mm]
x_{2} ' \\[0mm]
x_{3} '
\end{array} \right) =\left( \begin{array}{@{\,} ccc @{\, } }
D_{11} & D_{12} & D_{13} \\[0mm]
D_{21} & D_{22} & D_{23} \\[0mm]
D_{31} & D_{32} & D_{33}
\end{array} \right) \left( \begin{array}{@{\,} c @{\, } }
x_{1} \\[0mm]
x_{2} \\[0mm]
x_{3}
\end{array} \right) $$

$$D$$で行列$$\left( D_{ij} \right) $$ を,$$r$$で$$x_{1}, x_{2}, x_{3}$$ のベクトルを標せば,この等式はもっと簡潔なテンソルあるいは演算子の形に書くことができる:
$$x_{i} ' =D_{ij}x_{j} , (i,j=1,2,3)$$  または,$$r '=Dr$$
(テンソル方程式で繰り返される添え字$$j$$は,1から3までの和を意味する:
$$x_{i} ' =D_{i1}x_{1}+D_{i2}x_{2}+D_{i3}x_{3}$$ ここで,$$i=1, 2, 3$$)

群のいくつかの性質
部分群.商群.群の準同型対応.

$$H=\left\{ h_{1},h_{2}, \ldots \right\} $$が,群$$G=\left\{ g_{1},g_{2}, \ldots \right\} $$ の部分群と呼ばれるのは, $$H$$が$$G$$の部分集合であり,かつ$$G$$の演算に関して群を作るときである.そのような性質は,例えば,結晶群$$2/m$$の部分群:$$ 1=\left\{ 1\right\}, 2=\left\{ 1, 2 \right\} , \overline{1}=\left\{ 1,\overline{1} \right\} , m=\left\{ 1,m \right\} $$で確かめることができる.有限群のすべての部分群は, Lagrange(ラグランジュ)の定理《有限群$$ G $$ の部分群$$H$$ の位数は,$$G$$の位数の約数である》によって,容易に見つけることが出来る.部分群$$H=\left\{ h_{1},h_{2}, \ldots \right\} $$の元は,同時に群$$G=\left\{ g_{1},g_{2}, \ldots \right\} $$の元でもある.このため,必然的に,群とその部分群は共通の単位元をもつ.これを,$$h_{1}=g_{1}=e$$ としよう.群$$G$$ の部分群$$H$$ を決めれば,我々は,左(右)剰余類を定義することができる. $$g_{i}H=\left\{ g_{i}h_{1},g_{i}h_{2}, \ldots \right\} $$または $$Hg_{i}=\left\{ h_{1}g_{i},h_{2}g_{i}, \ldots \right\} $$,ただし,$$h_{1}=e$$ ,元$$g_{i}$$ は部分群$$H$$ に属さない($$g_{i} \neq e$$,$$g_{i} \notin H$,$g_{i} \in G$$).1つの剰余類に属す元は全て異なり, $$g_{i} \neq g_{j}$$ならそれぞれの剰余類$$g_{i}H, g_{j}H$$の元もまたすべて異なることを示すことが出来る.これを用いれば,部分群に関して,群を展開し,すなわち,各剰余類に群の元を分類することができる.もし,群$$G$$ が有限(位数$$ n $$ )ならば,部分群$$H \subset G$$ は有限なる位数$$m<n$$ をもつ.従って,群$$G$$ の,例えば,左剰余類での展開は有限回で尽きる.

$$G=g_{1}H \cup g_{2}H \cup \ldots \cup g_{j}H=\left\{ h_{1},h_{2}, \ldots ,h_{m} \right\} \cup \left\{ g_{2}h_{1},g_{2}h_{2}, \ldots ,g_{2}h_{m} \right\} \cup \ldots $$
$$ \ldots \cup \left\{ g_{j}h_{1},g_{j}h_{2}, \ldots ,g_{j}h_{m} \right\} $$
群$$2/m$$の場合には,部分群$$2$$に関する展開は次のようになる.
$$2/m=1\left\{ 1,2 \right\} \cup \overline{1}\left\{ 1,2 \right\} =\left\{ 1,2 \right\} \cup \left\{ \overline{1},m \right\} $$
部分群に関する群の展開での剰余類の数$$j$$を部分群の指数という.あきらかに,群$$2/m$$の部分群$$2=\left\{ 1,2 \right\} $$の指数は2である.
部分群$$H \subset G$$は,もしこの部分群に関する右と左の剰余類が一致するなら,不変部分群または正規部分群と呼ばれる($$H \vartriangleleft G$$ と書く):$$Hg_{i}=g_{i}H $$ ($$g_{i} \in G$$,$$H \vartriangleleft G$$)
群$$2/m$$の部分群$$2$$は正規である.なぜなら,$$\overline{1}\left\{ 1,2 \right\} =\left\{ 1,2 \right\} \overline{1}$$ となるからである.可換性 の条件$$Hg_{i}=g_{i}H$$から,新たな群,商群が定義できる.これを$$G/H$$と標記する.商群の元となるのは,左(あるいは右)剰余類である:(左)剰余類の場合の積則を次のように定式化する: $$g_{i}H \cdot g_{j}H=g_{i}g_{j}H$$ ($$g_{i}g_{j}H=g_{k}H$$,ただし$$g_{i}g_{j}=g_{k}$$ )
可換性の条件は,$$g_{j}$$ を$$H$$ の右側から左側に移すときに使われた.$$g_{1}=e$$ とすると,有限指数$$j$$ の部分群に関する商群$$G/H$$ の乗積表は次のようになる:

$$\begin{array}{c|cccc}
& g_{1}H & g_{2}H & \ldots & g_{j}H \\[0mm]
\hline
g_{1}H & g_{1}H & g_{2}H & \ldots & g_{j}H \\[0mm]
g_{2}H & g_{2}H & g_{2}^{2}H & \ldots & g_{2}g_{j}H \\[0mm]
\ldots & \ldots & \ldots & \ldots & \ldots \\[0mm]
g_{j}H & g_{j}H & g_{j}g_{2}H & \ldots & g_{j}^{2}H
\end{array}$$

特に,商群$$(2/m)/2$$の乗積表は次のようである.


$$ \begin{array}{c|cc} & \left\{ 1,2 \right\}  & \left\{ \overline{1},m \right\} \\[0mm] \hline \left\{ 1,2 \right\} & \left\{ 1,2 \right\} & \left\{ \overline{1},m \right\} \\[0mm] \left\{ \overline{1},m \right\} & \left\{ \overline{1},m \right\} & \left\{ 1,2 \right\} \end{array}  $$


  商群の概念は,群論において最も重要なものであり,無数の応用が存在する.群論におけるもう1つの重要な概念は,大きい群$$G=\left\{ g_{1},g_{2}, \ldots \right\} $$から小さい群$$F=\left\{ f_{1},f_{2}, \ldots \right\} $$ への準同型写像である.この写像は一方向で,次のように定義される:
$$g_{i} \to f_{i}, g_{j} \to f_{j}$$ なら $$g_{i}g_{j} \to f_{i}f_{j}$$
群が準同型なことは,記号$$G \to F$$ で標す.正規部分群$$H$$ に関する商群$$G/H$$は群$$G$$の準同型像であることを示すことができる:$$G \to G/H$$ これらの群の準同型は,群$$G$$の元$$g_{i}$$ を商群$$G/H$$ の元$$g_{i}H$$ に一方向に対応させることにより得られる:
$$g_{i} \to g_{i}H$$,$$g_{j} \to g_{j}H$$,$$g_{i}g_{j} \to g_{i}Hg_{j}H=g_{i}g_{j}H$$
このような対応の1方向性は,1つの剰余類が,$$G$$のいくつかの元と対応する.例えば,$$g_{1}^{*}=g_{i}h_{1}, g_{2}^{*}=g_{i}h_{2}, \ldots , g_{m}^{*}=g_{i}h_{m}$$  $$\left( h_{1}, h_{2}, \ldots , h_{m} \in H \vartriangleleft G, g_{i} \notin H, g_{i} \in G \right) $$が剰余類$$g_{j}H$$ に属することによる.
準同型対応があると,群$$G$$における積法則の研究を,小さい群$$G/H$$における積法則の研究に帰着させることが可能になる.
準同型写像は物理学で応用される群$$G$$の既約表現というものに関係がある.まずこれは演算子あるいは行列の群であつて,これらが準同型写像で表現している群$$G$$の積法則を保存しているような群である.