掲示板

平面群

繰り返し模様$${pg}$$★★

 第2回目(第2類)は,国際記号$$pg$$,ロシア式記号$$( b:a)・\tilde{a}$$の対称性です.
$$g$$はglide plane (映進面)の意味,$$\tilde{a}$$は並進成分が$$a$$軸方向に沿った映進の意味です.  

 

 

 

 

 

 

 

 

上図の模様は,どちらも同じ対称性で,横軸方向に映進があります.縦軸(上下方向)方向には映進はありません.

 

 

 

 

 

 

 

 

 

 

上図は有名なエッシャー作品(邂合)です.この図は縦方向$$b$$軸に沿って,映進$$\tilde{b}$$がありますので$$( b:a)・\tilde{b}$$,先の例を90°回してみたものと同じ対称性に属します.
■映進操作の説明は以下で行います.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

美しい幾何学p.93-95

繰り返し模様$$p1$$★★

国際記号$$p1$$,ロシア式記号$$(b:a)1$$

対称性が並進(格子の周期)以外に何もないパターンの例です.

 

 

 

 

 

 

 

 

 

 図中に同じ部分が繰り返し出てくる様子を調べます.例えば,上図のような格子が見つかるでしょう.このように格子周期以外の対称性がない場合は,単位胞タイル(オレンジで囲んだ平行4辺形)の中身全部が非対称要素(モチーフ)です.

平面群の記号で,格子を表す部分は,国際記号で$$p$$(なんの条件もない平行4辺形),ロシア式記号で$$(b/a)$$[$$b$$軸と$$a$$軸が直角でない一般的な角度で交差]と表します.点群の対称性の記号は何もないので$$1$$と記載します.

これが,もっとも簡単な平面群(第1類)です.
以下の図のように平行4辺形を変形したものも,この対称性を持っています.

 

この対称性に属するエッシャーの周期的な作品もいくつかあります.
私は,ハロウイン魔女を作って見ました.

 

 美しい幾何学p.68

繰り返し模様$$p2$$★★

 

 

 

 

 

 

 

 

 

 

 

 

 

 

表紙の写真はネットからお借りしたエジプトの模様です.
(今回の対称性は繰り返し模様の第3類)
この対称性は,国際記号で$$p2$$,ロシア式記号で$$(b/a):2$$ と記述されるのもです.作り方は,紙面に垂直な2回回転対称軸が,横軸(水平方向)に配列している状態が基本になります.その1次元の状態は,$$(a):2$$と表示します.周期的に(横軸$$a$$方向に)2回軸(赤で染めている)が1次元配列をしている状態なら,それらの2回軸の中心に新しい2回軸(白抜きにしている)が生じることは,図を見ているとわかるでしょう.

 

さて,この1次元の帯を,$$b$$軸(青い直線)に沿って繰り返し平行移動して2次元のパターン$$(b/a):2$$が得られます.$$b$$軸と$$a$$軸の交差する角度は,直交とは限りません(一般的な角度でOK)[注)ロシア式記号$$(b/a)$$は一般的な角度の意味.直交する場合は,$$(b:a)$$と書くのが決まりです].この場合,非対称要素(モチーフ)は単位胞タイルの1/2(例えば黄緑色に着色した部分)です.

この対称性の繰り返し模様はエジプトの模様でよく見られます.私たちも知らず知らずのうちに,このような模様をエジプトの民芸で見ているのでしょう.この模様を見たときなんとなくエジプト風を感じませんか.

表紙の模様もそうですが,次の模様も同様です.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

これらのエジプトの模様では,$$b$$軸と$$a$$軸は直交していますが,これはたまたまのことで,軸を直交させたとしても全体の対称性は変わりません(対称性が上昇するわけではないので記号を変える意味がありません).[注)2回回転対称軸が存在できる格子は,$$a$$軸と$$b$$軸が斜交しているもの(平行4辺形)でかまいません.もちろん直交してもかまわないのですが,条件のゆるい斜交している方を選びます] 次の図は,上のエジプトの模様を私が改造して,一般的な角度で$$b,a$$の軸が交差する模様に変えてみました.対称性は同じです.

 

 

 

 

繰り返し模様$$pgg2$$★☆

今回は,平面群の第4類の説明です.この類は,直交する2つの映進面がありますので複雑です.
映進面が1つのパターン$$pg$$の例を参照ください.

以下のペルシャのパターンが,$$pgg2$$の繰り返し模様の例です.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

国際記号で$$pgg2$$,ロシア式記号で$$(b:a):\tilde{b}:\tilde{a}$$と書かれるものです.
[構成方法1] 
① 2回対称軸が$$a$$軸方向に周期的に配列した1次元構造(図の1番上の行にあります); 
この対称性は$$(a):2$$
② この1次元構造を,$$b$$軸($$a$$軸に垂直)に沿って映進$$\tilde{b}$$すると,2次元のパターンが得られます.  対称性$$( b:a) :\tilde{b}:\tilde{a}$$
(注) 1次元構造$$( b) :2$$を映進$$\tilde{a}$$で繰り返し広げても同じ構造が得られます.
[構成方法2]
互いに直交する2つの映進面$$\tilde{a}$$,$$\tilde{b}$$が作用すると,
このパターン$$( b:a) :\tilde{b}:\tilde{a}$$が得られます.

上記の2つの構成方法を等しいと置くと,$$\tilde{b}:\tilde{a}=2 \odot \tilde{a}$$となり
これは,点群$$2m$$に同型な,拡張された点群であることがわかります.

(注)$$\odot $$
2つの直交する映進面$$\tilde{a}$$と$$\tilde{b}$$の組み合わせは,
交差する直線(不動線)がありますが,2回軸$$2$$と映進面$$\tilde{a}$$の組み合わせは,
互いに平行で交差しません.
記号$$ \odot $$は交差しない対称操作の組み合わせであるときに用いる記号です.
(注)拡張された点群 
$$\tilde{b}:\tilde{a}$$の組み合わせも,$$2 \odot \tilde{a}$$の組み合わせも,それらの対称操作を繰り返すと
並進の成分が生まれます.そのため,格子分だけ移動したものは同値としないと点群になりません.このような拡張された点群は,格子を核として写像すると点群に帰着できます.この場合は群$$2m$$と同型になります.

 

 

 

 

イスラームの繰り返し模様★★

イスラムデザインの美しい壁紙をご覧ください.

 

 

 

pinterestからお借りたこのデザインは,Aziza(カタールのドーハを拠点とするアーティスト)によるものです.彼女は神聖幾何学とイスラムのパターンを研究しています.https://artofislamicpattern.com/#/6

 

 

 

 

 

 

 

 

 

この模様はとても魅力的で,イスラム模様の特徴がよく出ています.
色のグラデーションがとても素敵なのですが,ここでは幾何学の話をするので,色の区別ができない眼鏡をかけたと思って色は無視します.

この壁紙の成り立ちを,表紙の図に示しました.この図の平面群(全部で17種類あります)は,$$p4mm$$と記号で書かれるものです.このような繰り返しパターンは,モチーフ(非対称要素)となる図形を,$$p4mm$$の対称操作で配置し構成されます.

壁紙模様で,まず目につくのは周期(格子)で,これを平面群の記述の先頭に書きます.この例では,記号で$$p$$と書きました.2次元のブラベ格子のタイプは$$p$$(plain=単純)と$$c$$(c-centred=c面心)の2つしかありません.そして,17種類の壁紙の対称性のうちの15種類が単純格子に分類されます.2次元の格子のタイプ分類(2次元のブラベ格子は5種類)は,前回の「ネットワーク・パターンの分類」で始めたところです(参照ください).

この壁紙模様の例では,すぐ,黒い正方格子が目につきます.しかも,正方形の中心にも格子点のある($$c$$面心格子)複合格子のように見えます.しかし,対角線の方向に目を配ると,一辺の長さが$$1/\sqrt{2}$$ になった,赤い正方格子($$p$$格子)が見えてきます.

始めに気づいたc面心格子(黒い格子)は「正方形」の対称性ですし,後で気づいた$$p$$格子(赤い格子)も「正方形」の対称性です.$$c$$面心格子を作れたように見えましたが,黒い格子を$$1/\sqrt{2}$$に縮小し45°回転すると赤い格子と同じものになります.正方格子のは$$p$$格子だけで,$$c$$面心格子は存在しないことがわかります.

 

 この繰り返し模様のモチーフ(最小の非対称要素)は,赤い格子の1/8(黒い格子の1/16)の直角2等辺3角形です.このような3角形の模様付きタイルを作れば,そのタイル8つで赤い格子$$p$$格子の単位胞内を作ることができます.出来上がった単位胞を並べれば,無限に繰り返す壁紙模様が出来上がります.このモチーフは非対称要素と呼ばれるように対称性のない最小タイルです.

 

 

 

最後に,平面群の対称性の記法で,格子タイプ$$p$$に続く$$4mm$$は,格子点の対称性を記述する点群の記号です.
(注)平面群と点群の関係を正確に言うと:平面群は,格子を法とする準同型写像で点群に帰着します.